Showing 3 of 3 results
A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-0J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-1J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
The upper panel shows the observed number of events in each of the binned SRs defined in Table 3, together with the expected SM backgrounds obtained after applying the efficiency correction method to compute the number of expected FSB events. `Others' include the non-dominant background sources, e.g. $t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. The distributions of two signal points with mass splittings $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 30$ GeV and $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 50$ GeV are overlaid. The lower panel shows the significance as defined in Ref. [115].
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the chargino signal sample with $m\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0=(125,25)$ GeV, in the SR-SF BDT-signal$\in (0.77,1]$ and SR-DF BDT-signal$\in (0.81,1]$ regions. The yields include the process cross-section and are weighted to the 139 fb$^{-1}$ luminosity. 170000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for chargino-pair production with $W$-boson-mediated decays in the $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ plane. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
The upper panel shows the observed number of events in the SRs defined in Table 3, together with the expected SM backgrounds obtained after the background fit in the CRs. `Others' include the non-dominant background sources, e.g.$t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. Distributions for three benchmark signal points are overlaid for comparison. The lower panel shows the significance as defined in Ref. [115].
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
The effective mass distribution in VR2Z.
The ETmiss distribution in SR0noZa.
The effective mass distribution in SR0noZa.
The ETmiss distribution in SR1noZa.
The effective mass distribution in SR1noZa.
The ETmiss distribution in SR2noZa.
The effective mass distribution in SR2noZa.
The ETmiss distribution in SR0noZb.
The effective mass distribution in SR0noZb.
The ETmiss distribution in SR1noZb.
The effective mass distribution in SR1noZb.
The ETmiss distribution in SR2noZb.
The effective mass distribution in SR2noZb.
The ETmiss distribution in SR0Z.
The effective mass distribution in SR0Z.
The ETmiss distribution in SR1Z.
The effective mass distribution in SR1Z.
The ETmiss distribution in SR2Z.
The effective mass distribution in SR2Z.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the R-slepton RPC model.
Expected 95% CL exclusion contour for the R-slepton RPC model.
Observed and expected 95% CL cross-section upper limits for the Stau RPC model, together with the theoretically predicted cross-section.
Observed and expected 95% CL cross-section upper limits for the Z RPC model, together with the theoretically predicted cross-section.
Observed 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Expected 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Observed 95% CL exclusion contour for the GGM tan beta = 30 model.
Expected 95% CL exclusion contour for the GGM tan beta = 30 model.
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the R-slepton RPC model, and the selection of Z-veto signal regions used to set limits in this model. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bbb' means that the regions SR0noZb, SR1noZb and SR2noZb were used, in addition to the three Z-rich regions (SR0-2Z). For the RPC stau and Z models, the ``aaa' combination of regions was used throughout.
Performance of the SR0noZa selection in the R-slepton RPC model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0noZb selection in the RPV chargino NLSP model with lambda_121 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0Z selection in the GGM tan beta = 30 model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Cut flows for a representative selection of SUSY signal points in the Z-veto signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows for a representative selection of SUSY signal points in the Z-rich signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses (or the value of mu in the case of GGM models). The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0noZa signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPC R-slepton model is used, with (m2,m1) = (450,300) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR1noZb signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPV gluino NLSP model is used, with lambda_133 != 0 and (m2,m1) = (800,400) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0Z signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the value of mu. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The GGM tan beta = 30 model is used, with (m2,m1) = (200,1000) GeV.
Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb-1 of proton-proton collision data at sqrt(s) = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model.
MT2 in WW CR for SR-WWa.
ET(miss,rel) in Top CR for SR-MT2 and SR-WWb/c.
ET(miss,rel) in ZV CR for SR-MT2 and SR-WWb/c.
M(jj) in Top CR for SR-Zjets.
SF - M(ll) in SR-WWa w/o M(ll) and ET(miss,rel).
DF - M(ll) in SR-WWa w/o M(ll) and ET(miss,rel).
SF - ET(miss,rel) in SR-WWa w/o M(ll) and ET(miss,rel).
DF - ET(miss,rel) in SR-WWa w/o M(ll) and ET(miss,rel).
SF - MT2 in SR-MT2 w/o MT2.
DF - MT2 in SR-MT2 w/o MT2.
SF - ET(miss,rel) in SR-Zjets w/o ET(miss,rel).
Observed 95% CL exclusion contour for chargino pair production via sleptons.
Expected 95% CL exclusion contour for chargino pair production via sleptons.
Observed 95% CL exclusion contour for chargino pair production via WW.
Observed 95% CL limit on signal strength for chargino pair production via WW for mN1 = 0 GeV.
Expected 95% CL limit on signal strength for chargino pair production via WW for mN1 = 0 GeV.
Observed 95% CL exclusion contour for chargino neutralino production via WZ.
Expected 95% CL exclusion contour for chargino neutralino production via WZ.
Observed 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
Expected 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
Observed 95% CL exclusion contour for slepton pair production (right-handed).
Expected 95% CL exclusion contour for slepton pair production (right-handed).
Observed 95% CL exclusion contour for slepton pair production (left-handed).
Expected 95% CL exclusion contour for slepton pair production (left-handed).
Observed 95% CL exclusion contour for slepton pair production (right- plus left-handed).
Expected 95% CL exclusion contour for slepton pair production (right- plus left-handed).
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=100 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=100 GeV.
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=140 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=140 GeV.
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV.
Observed 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV (2+3L combination).
Expected 95% CL exclusion contour for pMSSM w/ right-handed sleptons, M1=250 GeV (2+3L combination).
Expected 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV.
Observed 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV.
Expected 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV (2+3L combination).
Observed 95% CL exclusion contour for pMSSM w/o sleptons, M1=50 GeV (2+3L combination).
Observed 95% CL exclusion contour for selectron pair production (right-handed).
Expected 95% CL exclusion contour for selectron pair production (right-handed).
Observed 95% CL exclusion contour for selectron pair production (left-handed).
Expected 95% CL exclusion contour for selectron pair production (left-handed).
Observed 95% CL exclusion contour for selectron pair production (right- plus left-handed).
Expected 95% CL exclusion contour for selectron pair production (right- plus left-handed).
Observed 95% CL exclusion contour for smuon pair production (right-handed).
Expected 95% CL exclusion contour for smuon pair production (right-handed).
Observed 95% CL exclusion contour for smuon pair production (left-handed).
Expected 95% CL exclusion contour for smuon pair production (left-handed).
Observed 95% CL exclusion contour for smuon pair production (right- plus left-handed).
Expected 95% CL exclusion contour for smuon pair production (right- plus left-handed).
Observed 95% CL exclusion contour for chargino pair production via sleptons.
Expected 95% CL exclusion contour for chargino pair production via sleptons.
Signal regions contributing to Fig. 06a.
Signal regions contributing to Fig. 05.
Signal regions contributing to Fig. 08a.
Signal regions contributing to Fig. 08b.
Signal regions contributing to Fig. 08c.
Signal regions contributing to Fig. 09a.
Signal regions contributing to Fig. 09b.
Signal regions contributing to Fig. 09c.
Signal regions contributing to Fig. 10a.
Observed cross-section limits for Fig. 06a.
Observed cross-section limits for Fig. 05.
Observed cross-section limits for Fig. 07a.
Observed cross-section limits for Fig. 08a.
Observed cross-section limits for Fig. 08b.
Observed cross-section limits for Fig. 08c.
Observed CLs values for Fig. 06a.
Observed CLs values for Fig. 05.
Observed CLs values for Fig. 07a.
Observed CLs values for Fig. 08a.
Observed CLs values for Fig. 08b.
Observed CLs values for Fig. 08c.
Observed CLs values for Fig. 09a.
Observed CLs values for Fig. 09b.
Observed CLs values for Fig. 09c.
Observed CLs values for Fig. 10a.
ET(miss,rel) in WW CR for SR-MT2 and SR-WWb/c.
ET(miss,rel) in Top CR for SR-WWa.
Central light jets multiplicity in Top CR for SR-Zjets.
ET(miss,rel) in ZV CR for SR-WWa.
SF - ET(miss,rel) in SR-MT2 w/o MT2.
DF - ET(miss,rel) in SR-MT2 w/o MT2.
Number of generated events for Fig. 06a.
Number of generated events for Fig. 05.
Number of generated events for Fig. 07a.
Number of generated events for Fig. 08a.
Number of events generated for Fig. 08b.
Number of events generated for Fig. 08c.
Production cross-sections in Fig. 06a.
Production cross-sections in Fig. 05.
Production cross-sections in Fig. 07a.
Production cross-sections in Fig. 08a.
Production cross-sections in Fig. 08b.
Production cross-sections in Fig. 08c.
Acceptance IN PCT in Fig. 06a.
Acceptance IN PCT in Fig. 05.
Acceptance IN PCT in Fig. 07a.
Acceptance IN PCT in Fig. 08a.
Acceptance IN PCT in Fig. 08b.
Acceptance IN PCT in Fig. 08c.
Efficiency IN PCT in Fig. 06a.
Efficiency IN PCT in Fig. 05.
Efficiency IN PCT in Fig. 07a.
Efficiency IN PCT in Fig. 08a.
Efficiency IN PCT in Fig. 08b.
Efficiency IN PCT in Fig. 08c.
Total systematic uncertainty IN PCT on signal yields in Fig. 06a.
Total systematic uncertainty IN PCT on signal yields in Fig. 05.
Total systematic uncertainty IN PCT on signal yields in Fig. 07a.
Total systematic uncertainty IN PCT on signal yields in Fig. 08a.
Total systematic uncertainty IN PCT on signal yields in Fig. 08b.
Total systematic uncertainty IN PCT on signal yields in Fig. 08c.
Observed 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
Expected 95% CL exclusion contour for chargino neutralino production via WZ (2+3L combination).
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.