We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.
Event plane resolution as a function of centrality for $\psi_{2}$, $\psi_{3}$, and $\psi_{4}$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The statistical uncertainties are smaller than the markers.
The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.
The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.
Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}= 5.02$ TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of $0.5~\mathrm{nb}^{-1}$ and $1.4~\mathrm{nb^{-1}}$, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum $4 < p_\mathrm{T} < 30$ GeV and pseudorapidity $|\eta|<2.0$. The dominant sources of muons in this $p_\mathrm{T}$ range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon $p_\mathrm{T}$ and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass.
Summary of results for Inclusive HF muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for Inclusive HF muon v3 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.
Summary of results for charm muon v2 as a function of pT for different centrality. Uncertainties are statistical and systematic, respectively.