Rates for gamma + 1 jet.
Rates for gamma + 2 jet.
Rates for gamma + 3 jet.
A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.
Axis error includes +- 0.23/0.23 contribution (Data statistics).
Axis error includes +- 0.19/0.19 contribution (Data statistics).
Combined from the two branching fractions above. E-MU universality assumed.
Data on the inclusive production of the neutral vector mesonsρ 0(770),ω(782), K*0(892), andφ(1020) in hadronic Z decays recorded with the ALEPH detector at LEP are presented and compared to Monte Carlo model predictions. Bose-Einstein effects are found to be important in extracting a reliable value for theρ 0 production rate. An averageρ 0 multiplicity of 1.45±0.21 per event is obtained. Theω is detected via its three pion decay modeω→π + π − π 0 and has a total rate of 1.07±0.14 per event. The multiplicity of the K*0 is 0.83±0.09, whilst that of theφ is 0.122±0.009, both measured using their charged decay modes. The measurements provide information on the relative production rates of vector and pseudoscalar mesons, as well as on the relative probabilities for the production of hadrons containing u, d, and s quarks.
No description provided.
Average multiplicity per hadronic event. Extrapolation to the full X range.
No description provided.
We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.
SIG*Br(UPSI --> MU+ MU-).
SIG*Br(UPSI --> MU+ MU-).
SIG*Br(UPSI --> MU+ MU-).
A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.
Differential DELTA(1232)++ cross section. Errors are combined statistics and systematics.
Mean multiplicities. Extrapolation to full x range using a combination of JETSET, HERWIG and UCLA models. The second systematic error comes from the uncertainty in the extrapolation.
A study of b quark fragmentation at LEP is presented using a sample of semileptonic B decays containing a fully reconstructed charm meson. The data are compared to several theoretical models for heavy quark fragmentation; the free parameters in these models are fitted and the sensitivity of the model parameters to the rate of P-wave B meson production is studied. The mean scaled energy fraction of B 0 and B + mesons has been determined to be < x E > = 0.695 ± 0.006 ± 0.003 ± 0.007, where the errors are statistical, systematic and model dependence respectively. This result is consistent with previous, less direct measurements from inclusive leptonic B decays. Also presented is a model independent fit to the shape of the energy distribution of weakly decaying B mesons at LEP.
No description provided.
Symmetric three-jet events are selected from hadronic Z0 decays such that the two lower energy jets are each produced at an angle of about 150° with respect to the highest energy jet. In some cases, a displaced secondary vertex is reconstructed in one of the two lower energy jets, which permits the other lower energy jet to be identified as a gluon jet through anti-tagging. In other cases, the highest energy jet is tagged as a b jet or as a light quark (uds) jet using secondary vertex or track impact parameter and momentum information. Comparing the two lower energy jets of the events with a tag in the highest energy jet to the anti-tagged gluon jets yields a direct comparison of b, uds and gluon jets, which are produced with the same energy of about 24 GeV and under the same conditions. We observe b jets and gluon jets to have similar properties as measured by the angular distribution of particle energy around the jet directions and by the fragmentation functions. In contrast, gluon jets are found to be significantly broader and to have a markedly softer fragmentation function than uds jets. For the k⊥ jet finder with ycut=0.02, we find $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ b} {⤪ quark}}=1.089pm 0.024 ({⤪ stat.})pm0.024 ({⤪ syst.})$$ $${«ngle n^{⤪ ch.}»ngle {⤪ gluon}⩈er «ngle n^{⤪ ch.}»ngle {⤪ uds} {⤪ quark}}=1.390pm 0.038 ({⤪ stat.})pm0.032 ({⤪ syst.})$$ as the ratios of the mean charged particle multiplicity in the gluon jets compared to the b and uds jets. Results are also reported using the cone jet finder.
Two method of jet's reconstruction: 'kt' and 'cone' (see text).
Two method of jet's reconstruction: 'kt' and 'cone' (see text). QUARK meansUQ or DQ or SQ.
An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991–1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 ± 0.013 ± 0.022 ps.
No description provided.
We present a measurement of $\sigma \cdot B(W \rightarrow e \nu)$ and $\sigma \cdot B(Z~0 \rightarrow e~+e~-)$ in proton - antiproton collisions at $\sqrt{s} =1.8$ TeV using a significantly improved understanding of the integrated luminosity. The data represent an integrated luminosity of 19.7 pb$~{-1}$ from the 1992-1993 run with the Collider Detector at Fermilab (CDF). We find $\sigma \cdot B(W \rightarrow e \nu) = 2.49 \pm 0.12$nb and $\sigma \cdot B(Z~0 \rightarrow e~+e~-) = 0.231 \pm 0.012$nb.
First systematic error is due to detector effects, the second is due to uncertainty in the luminosity.
The production of Jψ mesons in Z0 decays is studied using 3.6 million hadronic events recorded by the OPAL detector at LEP. The inclusive Z0 to Jψ and b-quark to Jψ branching ratios are measured from the total yield of Jψ mesons, identified from their decays into lepton pairs. The Jψ momentum distribution is used to study the fragmentation of b-quarks. The production rate of ψ′ mesons, identified from their decays into a Jψ and a π+π− pair, is measured as well. The following results are obtained: ${Br(Z^{0}⌝ghtarrow {⤪ J}/ i X)=(3.9pm 0.2pm 0.3)cdot 10^{-3} {⤪ and} ↦op Br(Z^0⌝ghtarrow i ^⌕ime X)=(1.6pm 0.3pm 0.2)cdot 10^{-3}, }$ where the first error is statistical and the second systematic. Finally the Jψ sample is used to reconstruct exclusive b-hadron decays and calculate the corresponding b-hadron branching ratios and masses.
No description provided.
No description provided.
No description provided.