Tuning and test of fragmentation models based on identified particles and precision event shape data.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 11-60, 1996.
Inspire Record 424112 DOI 10.17182/hepdata.47800

Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

56 data tables

Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

More…

A study of tau decays involving eta and omega mesons.

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 74 (1997) 263-273, 1997.
Inspire Record 421984 DOI 10.17182/hepdata.68382

The 132 pbt - 1 of data collected by ALEPH from 1991 to 1994 have been used to analyze η and ω production in τ decays. The following branching fractions have been measured: \(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }} \right) = \left( {1.91 \pm 0.07 \pm 0.06} \right) \times {10^{ - 2}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }{\pi ^0}} \right) = \left( {4.3 \pm 0.6 \pm 0.5} \right) \times {10^{ - 3}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {K^ - }} \right) = \left( {2.9_{ - 1.2}^{ + 1.3} \pm 0.7} \right) \times {10^{ - 4}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {h^ - }{\pi ^0}} \right) = \left( {1.8 \pm 0.4 \pm 0.2} \right) \times {10^{ - 3}}\) and the 95% C.L. limit B(τ− → ντηπt -) < 6.2 × 10t - 4 has been obtained. The ωπt- and ηπt -π0 rates and dynamics are found in agreement with the predictions made from e+e∼ - annihilation data with the help of isospin invariance (CVC).

6 data tables

$\pi^+\pi^-\pi^0$ mass distribution (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the one-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.

$\pi^+\pi^-\pi^0$ mass distributions (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the two-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.

Background-subtracted $\omega\pi$ mass spectrum for the data presented here, plotted as black dots. The error has been set to zero if it is smaller than the point size.

More…

Further Properties of High-Mass Multijet Events at the Fermilab Proton-Antiproton Collider

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 54 (1996) 4221-4233, 1996.
Inspire Record 418504 DOI 10.17182/hepdata.52862

The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.

25 data tables

3-jet mass distribution.

Inclusive 3-jet Dalitz X3 distribution.

Inclusive 3-jet Dalitz X4 distribution.

More…

Properties of jets in Z boson events from 1.8-TeV anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 448-453, 1996.
Inspire Record 416570 DOI 10.17182/hepdata.42318

We present a study of events with Z bosons and hadronic jets produced in $\overline{p}p$ collisions at a center-of-mass energy of 1.8 TeV. The data consist of 6708 $Z \rightarrow e~+e~-$ decays from 106 pb$~{-1}$ of integrated luminosity collected using the CDF detector at the Tevatron Collider. The Z $+ \ge n$ jet cross sections and jet production properties have been measured for n = 1 to 4. The data compare well to predictions of leading order QCD matrix element calculations with added gluon radiation and simulated parton fragmentation.

6 data tables

The notation (N)JET(S) means greater than or equal to N jets. Cross sections include the branching ratio to E+ E-.

Transverse energy distribution of the first highest ET jet in >= 1jet events.. Data read from plots.

Transverse energy distribution of the second highest ET jet in >= 2jet events.. Data read from plots.

More…

WA97 results on strangeness production in lead lead collisions at 158-A-GeV/c

The WA97 collaboration Andersen, E. ; Andrighetto, A. ; Antinori, F. ; et al.
Nucl.Phys.A 610 (1996) 165C-174C, 1996.
Inspire Record 432744 DOI 10.17182/hepdata.36503

Preliminary results from WA97 measurements on Λ, Ξ and Ω production in lead-lead and proton-lead collisions are presented, along with a comparison of WA97 proton-lead data with previous WA85 proton-tungsten results. The ratio Ω gX seems to be enhanced in lead initiated reactions compared to proton initiated reactions.

4 data tables

No description provided.

No description provided.

PRELIMINARI DATA.

More…

Quark and gluon jet properties in symmetric three-jet events

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 384 (1996) 96008490 353-364, 1996.
Inspire Record 404562 DOI 10.17182/hepdata.48015

Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.

2 data tables

B-jets are identified with the lepton-tag analysis.

The same kinematics as in the table 1.


Measurement of the longitudinal, transverse and asymmetry fragmentation functions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 203-214, 1995.
Inspire Record 395450 DOI 10.17182/hepdata.48040

The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.

4 data tables

Transverse component of the fragmentation function.

Longitudinal component of the fragmentation function.

Asymmetry component of the fragmentation function.

More…

Strange baryon production in Z hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 67 (1995) 543-554, 1995.
Inspire Record 394716 DOI 10.17182/hepdata.47953

A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the∑± average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Properties of high mass multi - jet events at the Fermilab proton - anti-proton collider

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 75 (1995) 608-612, 1995.
Inspire Record 393345 DOI 10.17182/hepdata.52833

The properties of two-, three-, four-, five-, and six-jet events with multijet masses >600 GeV /c2 are compared with QCD predictions. The shapes of the multijet-mass and leading-jet-angular distributions are approximately independent of jet multiplicity and are well described by the NJETS matrix element calculation and the HERWIG parton shower Monte Carlo predictions. The observed jet transverse momentum distributions for three- and four-jet events discriminate between the matrix element and parton shower predictions, the data favoring the matrix element calculation.

19 data tables

Exclusive 2-jet mass distribution.

Exclusive 3-jet mass distribution.

Exclusive 4-jet mass distribution.

More…

W boson + jet angular distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amidei, D. ; et al.
Phys.Rev.Lett. 73 (1994) 2296-2300, 1994.
Inspire Record 374152 DOI 10.17182/hepdata.42492

The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.

2 data tables

Data normalized to 1 in the cos(theta) range -0.6 to 0.6.

Data normalized to 1 in the abs(cos(theta)) range <0.3.