Showing 10 of 1264 results
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |#Delta#eta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background normalization systematic uncertainty band Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
d+Au jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 0
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 1
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 2
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 3
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 4
jet correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, slice 5
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
d+Au jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 2
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 3
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 4
jet correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7, slice 5
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
d+Au background subtracted correlation Au+Au 20-60%, 3<p_{\text{T}}^{(t)}<4 GeV/c, |Deltaeta|>0.7
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with upper flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 3
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 4
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 5
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 0
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 1
background subtracted correlation Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, |Deltaeta|>0.7, slice 2
We present results on strange and multi-strange particle production in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV as measured with the STAR detector at RHIC. Mid-rapidity transverse momentum spectra and integrated yields of $K^{0}_{S}$, $\Lambda$, $\Xi$, $\Omega$ and their anti-particles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum ($p_T$) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
The production of mesons containing strange quarks (K$^0_s$, $\phi$) and both singly and doubly strange baryons ($\Lambda$, Anti-$\Lambda$, and $\Xi$+Anti-$\Xi$) are measured at central rapidity in pp collisions at $\sqrt{s}$ = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields (
The measured production spectra for K0s hadrons as a function of pT.
The measured production spectra for Lambda hadrons as a function of pT.
The measured production spectra for Anti-Lambda hadrons as a function of pT.
The measured production spectra for xi hadrons as a function of pT.
The measured production spectra for phi hadrons as a function of pT.
The ratio of cross sections as a function of PT for LAMBDA/K0S production.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 2360 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The average charged-particle muliplicity per unit of rapidity in the pseudorapidity region -2.5 to 2.5 for events with 2 or more charged particles as a function of the centre-of-mass energy.
A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in $|\eta|<0.8$ and $0.3 < p_T < 20$ GeV/$c$ are compared to the expectation in pp collisions at the same $\sqrt{s_{\rm NN}}$, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor $R_{\rm AA}$. The result indicates only weak medium effects ($R_{\rm AA} \approx $ 0.7) in peripheral collisions. In central collisions, $R_{\rm AA}$ reaches a minimum of about 0.14 at $p_{\rm T}=6$-7GeV/$c$ and increases significantly at larger $p_{\rm T}$. The measured suppression of high-$p_{\rm T}$ particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.
PT distributions of primary charged particles at mid-rapidity in central and peripheral PB-PB collisions.
PT distributions of primary charged particles at mid-rapidity in central and peripheral PB-PB collisions estimated from scaled PP data as described in the text of the paper.
Measurments of RAA, the nuclear modification factor (rate of PB-PB to P P cross section) in the central region.
Measurments of RAA, the nuclear modification factor (rate of PB-PB to P P cross section) in the peripheral region.
RAA for central collisions using the two alternate pp references as described in the text of the paper.
The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.
Transverse momentum spectra for positive and negative pions.
Transverse momentum spectra for positive and negative kaons.
Transverse momentum spectra for protons and antiprotons.
Mean transverse momentum as a function of the mass of the emitted particle.
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.
Pion HBT radii for the 5% most central collisions.
Pion HBT radii for the 5% most central collisions from the STAR experiment at 200 GeV taken from Adams et al. PR C71(2005)044906.
Ratio of Pion HBT radii for the OUT projection to that for the SIDE projection for the 5% most central collisions.
Ratio of Pion HBT radii for the OUT projection to that for the SIDE projection for the 5% most central collisions from the STAR experiment at 200 GeV taken from Adams et al. PR C71(2005)044906.;.
Pion HBT radii at KT=0.3 for the 5% most central collisions as a function of the central charged multiplicity. Data from other experiments is shown for comparison.
Product of the three HBT radii at KT=0.3 for the 5% most central collisions as a function of the central charged multiplicity. Data from other experiments is shown for comparison.
The decoupling time extracted from R_long(KT) as a function of the central charged multiplicity. Data from other experiments is shown for comparison.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 500 to 600 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0 to 2.8.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0 to 0.3.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0.3 to 0.8.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0.8 to 1.2.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 1.2 to 2.1.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 2.1 to 2.8.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 500 to 600 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.
Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Exponential-Gaussian-Exponential fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Exponential-Gaussian-Exponential fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Exponential-Gaussian-Exponential fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Exponential-Gaussian-Exponential fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Exponential-Gaussian-Exponential fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Parameters of the three-dimensional Exponential-Gaussian-Exponential fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.
Multiplicity selection for the analyzed sample. Uncorrected $N_{\rm ch}$ in $|\eta|$ < 1.2, $<dN_{\rm ch}/d\eta>|_{N_{\rm ch} >=1}$, number of events, and number of identical pion pairs in each range.
Multiplicity selection for the analyzed sample. Uncorrected $N_{\rm ch}$ in $|\eta|$ < 1.2, $<dN_{\rm ch}/d\eta>|_{N_{\rm ch} >=1}$, number of events, and number of identical pion pairs in each range.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.