The reactione+p →> e+π++n at c.m. energyW=1125MeV and momentum transfer Q2=0.117GeV2/c2 has been measured. The transverse and longitudinal structure functions have been separated by varying the polarization of the virtual photon (Rosenbluth plot) with a 3 to 4% error. In addition the longitudinal-transverse interference term has been determined measuring the right-left asymmetry with an accuracy of 3%. The experimental data are compared to model calculations, and the sensitivity of the results to the axial and pion formfactors is discussed.
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).
The cross section for the e$^{+}$ e$^{–}$ → π$^{+}$π$^{–}$π$^{0}$ process in the energy range 1.05–2.00 GeV has been measured using the data collected in the experiment with the Spherical Neutral Detector (SND) at the VEPP-2000 e$^{+}$ e$^{–}$ collider. The obtained results on the cross section are in good agreement with previous measurements by the SND at the VEPP-2M collider and BABAR, but have a better accuracy.
The Born cross section of the process e+e- -> pi+pi-pi0.
A description is given of the experimental techniques and investigation results of the parameters Σ , T , P for the γ p→p π 0 reaction using linear polarized photons and a polarized proton target. The measurements have been made in the photon energy range 280–450 MeV at pion c.m. angles between 60° and 135°. The new experimental data are used in an energy-independent channel multipole analysis without the Watson theorem.
No description provided.
The process e+e- to pi+ pi- pi+ pi- pi0 has been studied in the center of mass energy range 1280 -- 1380 MeV using 3.0 1/pb of data collected with the CMD-2 detector in Novosibirsk. Analysis shows that the cross section of the five pion production is dominated by the contributions of the eta pi+pi- and omega pi+pi- intermediate states.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
Axis error includes +- 15/15 contribution.
In the experiment with the SND detector at VEPP-2M e^+e^- collider the process $e^+e^-\to\pi^+\pi^-\pi^0$ was studied in the energy range 2E_0 from 1.04 to 1.38 GeV. A broad peak was observed with the visible mass $M_{vis}=1220\pm 20$ MeV and cross section in the maximum $\sigma_0\simeq 4$ nb. The peak can be interpreted as a $\omega$-like resonance $\omega (1200)$.
The total cross section for E+ E- --> PI+ PI- PI0 after correction for efficiency and radiative effects.
Measurement of secondary-proton polarization from the reaction γ p → π 0 p have been performed in the proton energy range 500–800 MeV at c.m. pion emission angles 100°, 120°, 140°. The experiment was carried out using an optical spark chamber telescope at the output of the magnetic spectrometer. The obtained experimental data are included in a Walker-type analysis in order to verify the parameters of the resonances P 11 (1470), D 13 (1570) and S 11 (1535). Proton polarization in the reaction γ p → π 0 p was measured for a photon energy of 450 MeV at a c.m. pion emission angle of 105° using photons linearly polarized at 45° to the reaction plane. A liquid hydrogen target in the field of a superconducting magnet was used for the separation of the P x ′ and P z ′ components of the secondary-proton polarization vector.
No description provided.
No description provided.
No description provided.
The cross section of the process e+ e- ---> eta gamma has been measured in the 600-1380 MeV c.m. energy range with the CMD-2 detector. The following branching ratios have been determined: B(rho ---> eta gamma) = (3.28 +- 0.37 +- 0.23) 10^{-4}, B(omega ---> eta gamma) = (5.10 +- 0.72 +- 0.34) 10^{-4}, B(phi --> eta gamma) = (1.287 +- 0.013 +- 0.063) 10^{-2}. Evidence for the rho'(1450) ---> eta gamma decay has been obtained for the first time.
The measured Born cross section for the ETA GAMMA final state.
The cross section of the $e^+e^-\to\omega\pi^0\to\pi^0\pi^0\gamma$ reaction was measured by the SND detector at VEPP-2M $e^+e^-$ collider in the energy range from threshold up to 1.4 GeV. Results of the cross section fitting by the sum of $\rho$, $\rho^{\prime}$ and $\rho^{\prime\prime}$ contributions are presented.
Only statistical errors are presented.
We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) mass spectra, the cross sections for the processes e+ e- --> 3(pi+pi-), e+ e- --> 2(pi+pi-pi0) and e+ e- --> K+ K- 2(pi+pi-) are measured for center-of-mass energies from production threshold to 4.5 GeV. The uncertainty in the cross section measurement is typically 6-15%. We observe the J/psi in all these final states and measure the corresponding branching fractions.
The cross section for E+ E- --> 3PI+ 3PI- as measured with the ISR data. Errors are statistical only.
The cross section for E+ E- --> 2PI+ 2PI- 2PI0 as measured with the ISR data. Errors are statistical only.
The cross section of the process e+ e- --> omega pi0 --> pi0 pi0 gamma has been measured in the c.m. energy range 920-1380 MeV with the CMD-2 detector. Its energy dependence is well described by the interference of the rho(770) and rho'(1450) mesons decaying to omega pi0. Upper limits for the cross sections of the direct processes e+ e- --> pi0 pi0 gamma, eta pi0 gamma have been set.
Measurement of the Born cross section and the 'Bare' cross section of the process E+ E- --> OMEGA < PI0 GAMMA > PI0.
Upper limits for the non OMEGA PI0 cross section.
Upper limits of the ETA PI0 GAMMA cross section.