The $p_{\rm T}$-differential production cross sections of the prompt charmed mesons $D^0$, $D^+$, $D^{*+}$ and $D_{\rm s}^{+}$ and their charge conjugate in the rapidity interval $-0.96 < y_{\rm cms} < 0.04$ were measured in p-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The nuclear modification factor $R_{\rm pPb}$, quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15-20% uncertainties with unity in the transverse momentum interval $1 < p_{\rm T} < 24$ GeV/$c$. No significant difference among the $R_{\rm pPb}$ of the four D-meson species is observed. The results are described within uncertainties by theoretical calculations that include initial-state effects. The measurement adds experimental evidence that the modification of the momentum spectrum of D mesons observed in Pb-Pb collisions with respect to pp collisions is due to strong final-state effects induced by hot partonic matter.
pT-differential cross section of prompt D0 mesons measured in p-Pb collisions in the rapidity interval -0.96<y_cms<0.04.
pT-differential cross section of prompt D+ mesons measured in p-Pb collisions in the rapidity interval -0.96<y_cms<0.04.
pT-differential cross section of prompt D*+ mesons measured in p-Pb collisions in the rapidity interval -0.96<y_cms<0.04.
The production of the prompt charmed mesons $D^0$, $D^+$ and $D^{*+}$ relative to the reaction plane was measured in Pb-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision of $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the LHC. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse momentum ($p_{\rm T}$) interval of 2-16 GeV/$c$. The azimuthal anisotropy is quantified in terms of the second coefficient $v_2$ in a Fourier expansion of the D meson azimuthal distribution, and in terms of the nuclear modification factor $R_{\rm AA}$, measured in the direction of the reaction plane and orthogonal to it. The $v_2$ coefficient was measured with three different methods and in three centrality classes in the interval 0-50%. A positive $v_2$ is observed in mid-central collisions (30-50% centrality class), with an mean value of $0.204_{-0.036}^{+0.099}$ (tot.unc.) in the interval $2 < p_{\rm T} < 6$ GeV/$c$, which decreases towards more central collisions (10-30% and 0-10% classes). The positive $v_2$ is also reflected in the nuclear modification factor, which shows a stronger suppression in the direction orthogonal to the reaction plane for mid-central collisions. The measurements are compared to theoretical calculations of charm quark transport and energy loss in high-density strongly-interacting matter at high temperature. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy. However, they are challenged to simultaneously describe the strong suppression of high-$p_{\rm T}$ yield of D mesons in central collisions and their azimuthal anisotropy in non-central collisions.
Prompt D^0 meson v2 as a function of pT for centrality 0-10%. The first systematic uncertainty is from the data and the second from the B feed-down.
Prompt D^0 meson v2 as a function of pT for centrality 10-30%. The first systematic uncertainty is from the data and the second from the B feed-down.
Prompt D^0 meson v2 as a function of pT for centrality 30-50%. The first systematic uncertainty is from the data and the second from the B feed-down.
The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.
Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.
Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.
Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.
Azimuthally anisotropic distributions of D$^0$, D$^+$ and D$^{*+}$ mesons were studied in the central rapidity region ($|y|<0.8$) in Pb-Pb collisions at a centre-of-mass energy $\sqrt{s_{\rm NN}} = 2.76$ TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient $v_2$ (commonly denoted elliptic flow) was measured in the centrality class 30-50% as a function of the D meson transverse momentum $p_{\rm T}$, in the range 2-16 GeV/$c$. The measured $v_2$ of D mesons is comparable in magnitude to that of light-flavour hadrons. It is positive in the range $2 < p_{\rm T} < 6$ GeV/$c$ with $5.7\sigma$ significance, based on the combination of statistical and systematic uncertainties.
v2 vs. pt for D0. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
v2 vs. pt for D+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
v2 vs. pt for D*+. The first systematic (sys) error is that from the data analysis and the second is from the B feed-down subtraction, as explained in the paper.
The production of $D^{*\pm}$ mesons in deep inelastic $ep$ scattering has been measured for exchanged photon virtualities $ 5
D(SIG)/DPT IN NB/GEV as a function of PT IN GEV.
D(SIG)/DETARAP IN NB as a function of ETARAP.
D(SIG)/DZ IN NB as a function of Z.
Charm production in deep inelastic ep scattering was measured with the ZEUS detector using an integrated luminosity of 354 pb^{-1}. Charm quarks were identified by reconstructing D^{+} mesons in the D^{+} -> K^{-} pi^{+} pi^{+} decay channel. Lifetime information was used to reduce combinatorial background substantially. Differential cross sections were measured in the kinematic region 5 < Q^{2} < 1000 GeV^{2}, 0.02 < y < 0.7, 1.5 < p_{T}(D^{+}) < 15 GeV and |eta(D^{+})| < 1.6, where Q^{2} is the photon virtuality, y is the inelasticity, and p_{T}(D^{+}) and eta(D^{+}) are the transverse momentum and the pseudorapidity of the D^{+} meson, respectively. Next-to-leading-order QCD predictions are compared to the data. The charm contribution, F_{2}^{cc}, to the proton structure-function F_{2} was extracted.
The bin-averaged differential cross section as a function of Q^2. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.
The bin-averaged differential cross section as a function of Y. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.
The bin-averaged differential cross section as a function of PT. The (sys) error is the experimental systematic uncertainty, excluding the luminosity and branching ratio uncertainties.
Charm production at the LHC in pp collisions at sqrt(s)=7 TeV is studied with the LHCb detector. The decays D0 -> K- pi+, D+ -> K- pi+ pi+, D*+ -> D0(K- pi+) pi+, D_s+ -> phi(K- K+) pi+, Lambda_c+ -> p K- pi+, and their charge conjugates are analysed in a data set corresponding to an integrated luminosity of 15 nb^{-1}. Differential cross-sections dsigma/dp_T are measured for prompt production of the five charmed hadron species in bins of transverse momentum and rapidity in the region 0 < p_T < 8 GeV/c and 2.0 < y < 4.5. Theoretical predictions are compared to the measured differential cross-sections. The integrated cross-sections of the charm hadrons are computed in the above p_T-y range, and their ratios are reported. A combination of the five integrated cross-section measurements gives sigma(c\bar{c})_{p_T < 8 GeV/c, 2.0 < y < 4.5} = 1419 +/- 12 (stat) +/- 116 (syst) +/- 65 (frag) microbarn, where the uncertainties are statistical, systematic, and due to the fragmentation functions.
Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of Lambda_c+ baryons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.
Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of D0 mesons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.
Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of D+ mesons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.
The production of $J/\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^0 X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^0)<4$, $3<p_T(D^0)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^+)<4$, $3<p_T(D^+)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D_s^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D_s^+)<4$, $3<p_T(D_s^+)<12$ GeV/$c$ region.
The $p_{\rm T}$-differential inclusive production cross sections of the prompt charmed mesons $D^0$, $D^+$, and $D^{*+}$ in the rapidity range |y|<0.5 were measured in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC using the ALICE detector. Reconstructing the decays $D^0\rightarrow K^-\pi^+$, $D^+\rightarrow K^-\pi^+\pi^+$, $D^{*+}\rightarrow D^0\pi^+$, and their charge conjugates, about 8,400 $D^0$, 2,900 $D^+$, and 2,600 $D^{*+}$ mesons with 1<$p_{\rm T}$<24 GeV/$c$ were counted, after selection cuts, in a data sample of 3.14x10$^8$ events collected with a minimum-bias trigger (integrated luminosity $L_{\rm int}$ = 5/nb). The results are described within uncertainties by predictions based on perturbative QCD.
Differential cross section for prompt D0 production.
Differential cross section for prompt D+ production.
Differential cross section for prompt D*+ production.
This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.
Percentage D*+- production rate R in Z and PT bins.
Percentage D*+- production rate R integrated over jet PT 25-70 GeV as a function of Z.
D*+- production rate R integrated over jet PT=25-70 GeV and Z=0.3-1.0.