Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

138 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Probing Parton Dynamics of QCD Matter with $\Omega$ and $\phi$ Production

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 021903, 2016.
Inspire Record 1378002 DOI 10.17182/hepdata.72068

We present measurements of $\Omega$ and $\phi$ production at mid-rapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of $N(\Omega^{-}+\Omega^{+})/(2N(\phi))$. These ratios as a function of transverse momentum ($p_T$) fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at $\sqrt{s_{NN}}$ = 19.6, 27 and 39 GeV, and in central collisions at 11.5 GeV in the intermediate $p_T$ region of 2.4-3.6 GeV/c. We further evaluate empirically the strange quark $p_T$ distributions at hadronization by studying the $\Omega/\phi$ ratios scaled by the number of constituent quarks. The NCQ-scaled $\Omega/\phi$ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to $\sqrt{s_{NN}} >= 19.6$ GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark-matter to hadronic matter at collision energies below 19.6 GeV.

85 data tables

Phi Meson Spectra.

Phi Meson Spectra.

Phi Meson Spectra.

More…

Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…

Study of the inclusive production of charged pions, kaons, and protons in pp collisions at sqrt(s) = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2164, 2012.
Inspire Record 1123117 DOI 10.17182/hepdata.59366

Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.

80 data tables

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 900 GeV.

Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) and at a centre-of-mass energy of 900 GeV.

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 2760 GeV.

More…

Strange particle production in proton-proton collisions at sqrt(s) = 0.9 TeV with ALICE at the LHC

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Eur.Phys.J.C 71 (2011) 1594, 2011.
Inspire Record 881474 DOI 10.17182/hepdata.57569

The production of mesons containing strange quarks (K$^0_s$, $\phi$) and both singly and doubly strange baryons ($\Lambda$, Anti-$\Lambda$, and $\Xi$+Anti-$\Xi$) are measured at central rapidity in pp collisions at $\sqrt{s}$ = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields (<dN/dy>) of 0.184 $\pm$ 0.002 stat. $\pm$ 0.006 syst. for K$^0_s$ and 0.021 $\pm$ 0.004 stat. $\pm$ 0.003 syst. for $\phi$. For baryons, we find <dN/dy> = 0.048 $\pm$ 0.001 stat. $\pm$ 0.004 syst. for $\Lambda$, 0.047 $\pm$ 0.002 stat. $\pm$ 0.005 syst. for Anti-$\Lambda$ and 0.0101 $\pm$ 0.0020 stat. $\pm$ 0.0009 syst. for $\Xi$+Anti-$\Xi$. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.

6 data tables

The measured production spectra for K0s hadrons as a function of pT.

The measured production spectra for Lambda hadrons as a function of pT.

The measured production spectra for Anti-Lambda hadrons as a function of pT.

More…

Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
Phys.Lett.B 693 (2010) 69-80, 2010.
Inspire Record 865584 DOI 10.17182/hepdata.55676

The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 &lt; pT &lt; 1.6 GeV/c and 2.5 &lt; y &lt; 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.

3 data tables

The measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The first systematic error is the uncorrelated systemtatic error and the second is the systematic error correlated across bins.

The double differential prompt K0S production cross section in three rapidity bands.

The double differential prompt K0S production cross section in the rapidity band 2.5 to 4.0.


Rapidity dependence of deuteron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 83 (2011) 044906, 2011.
Inspire Record 856692 DOI 10.17182/hepdata.89452

We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.

25 data tables

$C_{\Lambda}(p_{\mathrm{T}})$ versus $p_{\mathrm{T}}$ for $\mathrm{\Lambda}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=[0, 1, 2, 3]$ for $0-20$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0$ for $0-20$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{d}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0$ for $0-20$% central

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 103 (2009) 082002, 2009.
Inspire Record 816469 DOI 10.17182/hepdata.57326

The momentum distribution of electrons from semi-leptonic decays of charm and bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative quantum chromodynamics (pQCD) calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is \sigma_{b\b^bar}= 3.2 ^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.

6 data tables

Bottom contribution to the electrons from heavy flavor decay as a function of PT. These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The g3data program indicates an extra uncertainty of 0.01 on these values.

Differential bottom production cross section at mid rapidity (y=0) To obtain this value, the differential "bottom-decay" electrons cross-section has been extrapolated to PT=0 using the spectrum shape predicted by pQCD. The b->e branching ratio used was 10 +-1%.

Invariant cross section of electrons from heavy flavor decay versus PT These values has been obtained using g3data software which to extract the data from the plot and should therefore be used with caution. The values in the last column indicate the level of uncertainty intoduced by g3data.

More…