We report on measurements of e+e- annihilation into hadrons and lepton pairs. The data have been collected with the L3 detector at LEP at centre-of-mass energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7 pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the measurement of cross sections and leptonic forward-backward asymmetries. The results are in good agreement with Standard Model predictions.
Measured cross sections for the hadronic events.
Measured cross sections for the muon-pair events.
Measured cross sections for the tau-pair events.
The inclusive production of D*+- mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies of 183 and 189GeV. The D* mesons are reconstructed in their decay to D0pi+ with the D0 observed in the two decay modes Kpi+ and Kpi+pi-pi+. After background subtraction, 100.4+-12.6(stat) D*+- mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8+-5.9 (stat) D*+- mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections as functions of the D* transverse momentum p_t and pseudorapidity \eta are presented in the kinematic region 2
Differential PT distribution for anti-tagged events for both D* decay modesand combined.
Differential ETARAP distribution for anti-tagged events for both D* decay modes and combined.
Integrated cross section using the anti-tagged events for D* production in the kinematic range of the experiment.
Total cross sections for Sigma- and pi- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c. These measurements were performed with a transmission technique adapted to the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for sigma_tot(Sigma- N) and sigma_tot(pi- N), which were deduced from nuclear cross sections.
Results for nuclear total cross sections.
Average total cross sections for nucleon targets deduced from the nuclear target data, at the average beam momentum.
We have searched for second generation leptoquark (LQ) pairs in the \mu\mu+jets channel using 94+-5 pb^{-1} of pbar-p collider data collected by the D0 experiment at the Fermilab Tevatron during 1993-1996. No evidence for a signal is observed. These results are combined with those from the \mu\nu+jets and \nu\nu+jets channels to obtain 95% confidence level (C.L.) upper limits on the LQ pair production cross section as a function of mass and $beta, the branching fraction of a LQ decay into a charged lepton and a quark. Lower limits of 200(180) GeV/c^2 for \beta=1(1/2) are set at the 95% C.L. on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of \beta.
No description provided.
The ee -> ZZ cross section at sqrt(s)=182.7 and 188.6 GeV has been measured using the ALEPH detector. The analysis covers all of the visible ZZ final states and yields cross section measurements of sigma_ZZ(182.7 GeV) = 0.11 +- (0.16,0.11) (stat.) +- 0.04 (syst.) pb and sigma_ZZ(188.6 GeV) = 0.67 +- 0.13 (stat.) +- 0.04 (syst.) pb consistent with the Standard Model expectations.
The combined cross sections for the 2Z0 (NC2) fixed state.
We present evidence for the diffractive processes nu_mu Fe -> mu^- D_s^+ (D_s^*+) Fe and nubar_mu Fe -> mu^+ D_s^- (D_s^*-) Fe using the Fermilab SSQT neutrino beam and the Lab E neutrino detector. We observe the neutrino trident reactions nu_mu Fe -> nu_mu mu^- mu^+ Fe and nubar_mu Fe -> nubar_mu mu^+ mu^- Fe at rates consistent with Standard Model expectations. We see no evidence for neutral-current production of J/psi via either diffractive or deep inelastic scattering mechanisms.
The quoted error are completely dominated by statistics. The cross section per nucleon.
The quoted error are completely dominated by statistics. The cross section per nucleon.
The quoted error are completely dominated by statistics. The cross section per nucleon.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
Single and multi-photon events with missing energy are analysed using data collected with the L3 detector at LEP at a centre-of-mass energy of 189 GeV, for a total of 176 pb^{-1} of integrated luminosity. The cross section of the process e+e- -> nu nu gamma (gamma) is measured and the number of light neutrino flavours is determined to be N_\nu = 3.011 +/- 0.077 including lower energy data. Upper limits on cross sections of supersymmetric processes are set and interpretations in supersymmetric models provide improved limits on the masses of the lightest neutralino and the gravitino. Graviton-photon production in low scale gravity models with extra dimensions is searched for and limits on the energy scale of the model are set exceeding 1 TeV for two extra dimensions.
No description provided.
A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.
Measured cross section within the kinematic and geometric cuts. THETA(C=GAMMA) is the angle between the photon and the closest jet, and THETA(C=LEPTON) is the angle between the photon and the lepton.
95 PCT confidence limits on possible anomalous contributions.
The production of the J/ ψ and ψ ′ charmonia states has been studied, through their dimuon decay, in proton, Oxygen and Sulphur induced reactions, by the NA38 experiment at the CERN SPS. The proton data was collected with beams of 200 and 450 GeV, while the ion beams had an energy of 200 GeV per incident nucleon. The J/ ψ production cross-section per nucleon-nucleon collision exhibits a remarkably continuous pattern, as a function of the product of the mass numbers of the interacting nuclei, from pp up to S-U reactions. The same pattern is observed within S-U collisions, as a function of the collision centrality. While in p-A interactions both charmonia states exhibit the same A-dependence, in S-U collisions the ψ ′ production is very strongly suppressed.
Results of fitting the 200 and 450 GeV J/PSI data separately with a power law parametrization SIG=SIG0*(A*B)**POWER, where A and B are the beam and targetmass numbers. The value obtained from a combined fit is also given, as well as the ratio between the values of SIG0 for the 200 and 450 GeV data sets.
The J/PSI cross sections per nucleon (times the BR to di-muons) rescaled to 200 GeV/nucleon, using the SIG0 ratio detemined in the previous table, and to the cm rapidity window 0 to 1. The errors are combined statistical and systematic.
The ratio between the PSI(3685) and the J/PSI production cross section, times their BR into di-muons, at an incident beam energy of 450 GeV per nucleon. The errors are combined statistical and systematic.