A thrust analysis of Large-Rapidity-Gap events in deep-inelastic ep collisions is presented, using data taken with the H1 detector at HERA in 1994. The average thrust of the final states X, which emerge from the dissociation of virtual photons in the range 10 < Q2 < 100 GeV2, grows with hadronic mass M_X and implies a dominant 2-jet topology. Thrust is found to decrease with growing Pt, the thrust jet momentum transverse to the photon-proton collision axis. Distributions of Pt2 are consistent with being independent of MX. They show a strong alignment of the thrust axis with the photon-proton collision axis, and have a large high-Pt tail. The correlation of thrust with MX is similar to that in e+e- annihilation at sqrt(see)=MX, but with lower values of thrust in the ep data. The data cannot be described by interpreting the dissociated system X as a qqbar state but inclusion of a substantial fraction of qqbarg parton configurations leads naturally to the observed properties. The soft colour exchange interaction model does not describe the data.
PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).
PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).
PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).
Charged particles ($h^\pm$) and \kz mesons have been studied in photoproduced events containing at least one jet of $E_T > 8$ GeV in a pseudorapidity interval (--0.5, 0.5) in the ZEUS laboratory frame. Distributions are presented in terms of transverse momentum, pseudorapidity and distance of the particle from the axis of a jet. The properties of \hpm within the jet are described well using the standard settings of PYTHIA, but the use of the multiparton interaction option improves the description outside the jets. A reasonable overall description of the \kz behaviour is possible with PYTHIA using a reduced value of the strangeness suppression parameter. The numbers of $h^\pm$ and \kz within a jet as defined above are measured to be $3.25\pm0.02\pm0.28$ and $0.431\pm0.013\pm0.088$ respectively. Fragmentation functions are presented for $h^\pm$ and \kz in photoproduced jets; agreement is found with calculations of Binnewies et al. and, at higher momenta, with $p\bar p$ scattering and with standard PYTHIA. Fragmentation functions in direct photoproduced events are extracted, and at higher momenta give good agreement with data from related processes in $e^+e^-$ annihilation and deep inelastic $ep$ scattering.
Corrected multiplicities of charged particles and neutral K0 mesons per photoproduced jet.
Corrected distribution of charged particles per jet in events containing a hadron jet.
Corrected distribution of charged particles per jet in events containing a hadron jet.
Quasi-elastic (z >0.95) photo-production of psi' mesons has been observed at HERA for photon-proton centre-of-mass energies in the range 40 to 160 GeV. The psi' mesons were identified through their decays to l+l- and to J/psi pi+ pi-, where the J/psi subsequently decays to l+l-, the lepton l being either a muon or an electron. The cross-section for quasi-elastic photoproduction was measured to be [18.0 +- 2.8 (stat) +- 3.0(syst)] nb at a photon-proton centre-of-mass energy of 80 GeV. The ratio of the psi' to J/psi quasi-elastic cross-sections is 0.150 +- 0.027 (stat) +- 0.022 (syst).
Overall value for photoproduction cross section combining the different decay modes and data sample.. 1994 and 1995 data.. The second systematic error is from the branching ratio uncertainties.
Combined cross section from PSI(3685) --> J/PSI(1S) < E+ E- > PI+ PI- and PSI(3685) --> J/PSI(1S) < MU+ MU- > PI+ PI- modes using both the 1994 and 1995 data.. The second systematic error is from the branching ratio uncertainties.
Cross section from PSI(3685) --> J/PSI(1S) < E+ E- > PI+ PI- mode.
We have searched for first generation scalar leptoquark (LQ) pairs in the enu+jets channel using ppbar collider data (integrated luminosity= 115 pb^-1) collected by the DZero experiment at the Fermilab Tevatron during 1992-96. The analysis yields no candidate events. We combine the results with those from the ee+jets and nunu+jets channels to obtain 95% confidence level (CL) upper limits on the LQ pair production cross section as a function of mass and of beta, the branching fraction to a charged lepton. Comparing with the next-to-leading order theory, we set 95% CL lower limits on the LQ mass of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively.
The cross section values are extracted with the assumption that BR(LQ --> EQUARK) = 1/2.
We present a measurement of the t-tbar cross section in p-pbar collisions at sqrt(s)=1.8 TeV using an integrated luminosity of 109 pb-1 collected with the Collider Detector at Fermilab. The measurement uses t-tbar decays into final states which contain one or two high transverse momentum leptons and multiple jets, and final states which contain only jets. Using acceptances appropriate for a top quark mass of 175 GeV/c^2, we find sigma(t-tbar)=7.6 (+1.8 -1.5) pb .
SVX (second vertex) and SLT (second lepton) denote different method of b-tagging. Errors shown are statistical and systematical combined in quadrature.
We report the first observation of the Xi- pi+ decay mode of the Xi0(1690), confirming the existence of this resonance. The Xi0(1690) were produced by Sigma- of 345 Gev/c mean momentum in copper and carbon targets. The mass and width are close to those observed earlier for the Xi-(1690) in the Lambda K- decay channel. The product of inclusive production cross section and branching ratio is given relative to that of the Xi0(1530).
The cross setion times branching ratio.
None
PI+ PI+ correlations. The correlation function is parametrized as follows R = 1 + CONST(NAME=BEC-LAM)*EXP(-CONST(NAME=BEC-R)**2*MQ**2), where MQ**2 = M(pi1 + pi2)**2 - 4*M(pi)**2.
PI- PI- correlations. The correlation function is parametrized as follows R = 1 + CONST(NAME=BEC-LAM)*EXP(-CONST(NAME=BEC-R)**2*MQ**2), where MQ**2 = M(pi1 + pi2)**2 - 4*M(pi)**N = RE.
The neutral kaon regeneration amplitude in carbon at momenta between 250 and 750 MeV/ c was determined by measuring the interference of inherent and coherently regenerated K S amplitudes. This interference appears in the rates of initially pure (tagged) K 0 and K 0 decaying to π + π − after crossing a carbon absorber.
No description provided.
A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range $5 \leq Q^2 \leq 185\gev^2$ and $160 \leq W \leq 250\gev$, where $Q^2$ is the virtuality of the photon and $W$ is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the $\gamma^*-$pomeron rest frame, on the mass of the hadronic final state, $M_X$. With increasing $M_X$ the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range $134-277$ GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the $\eta - \phi$ plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies $E^{jet}_T>14$ GeV are presented. The jet shape broadens as the jet pseudorapidity ($\eta^{jet}$) increases and narrows as $E^{jet}_T$ increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high $\eta^{jet}$ and low $E^{jet}_T$. The observed broadening of the jet shape as $\eta^{jet}$ increases is consistent with the predicted increase in the fraction of final state gluon jets.
Inclusive jet production. Data in different pseudorapidity ranges.
Inclusive jet production. Data in different pseudorapidity ranges.
Inclusive jet production. Data in different pseudorapidity ranges.