A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Cascade production in the reactions gamma p --> K+ K+ (X) and gamma p --> K^+ K^+ pi- (X)

Guo, L. ; Weygand, D.P. ; Battaglieri, M. ; et al.
Phys.Rev.C 76 (2007) 025208, 2007.
Inspire Record 744487 DOI 10.17182/hepdata.31494

Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.

47 data tables

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.

More…

Cross Sections for the $\gamma p \to K^{*0}\Sigma^+$ Reaction at $E_\gamma = 1.7 - 3.0$ GeV

The CLAS collaboration Hleiqawi, I. ; Hicks, K. ; Carman, D.S. ; et al.
Phys.Rev.C 75 (2007) 042201, 2007.
Inspire Record 742894 DOI 10.17182/hepdata.52647

Differential cross sections for the reaction $\gamma p \to K^{*0} \Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The \kstar was detected by its decay products, $K^+\pi^-$, in the CLAS detector at Jefferson Lab. These data are the first \kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the model's two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $\kappa$ meson exchange in $t$-channel diagrams should be investigated.

2 data tables

Cross sections with total uncertainties.

Cross sections with total uncertainties.


Deeply virtual and exclusive electroproduction of omega mesons.

The CLAS collaboration Morand, L. ; Dore, D. ; Garcon, M. ; et al.
Eur.Phys.J.A 24 (2005) 445-458, 2005.
Inspire Record 681604 DOI 10.17182/hepdata.43499

The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.

85 data tables

Total cross sections and interference terms (TT and TL).

Differential cross sections DSIG/DT for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.

Differential cross sections DSIG/DT for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.

More…

Differential cross-section for n p elastic scattering in the angular region 50-degrees < Theta* < 180-degrees at 459-MeV

Northcliffe, L.C. ; Jain, M. ; Evans, M.L. ; et al.
Phys.Rev.C 47 (1993) 36-46, 1993.
Inspire Record 358672 DOI 10.17182/hepdata.26016

The differential cross section for n-p elastic scattering at 459 MeV in the c.m. angular region 50°<θ*<180° has been measured with high statistical precision and good relative accuracy. The uncertainty in the absolute normalization (based on the simultaneously measured yield of deuterons from the np→dπ0 reaction) was initially estimated to be ∼7%. The results agree well with back-angle data obtained independently at LAMPF but less well with results from Saclay and the Princeton-Pennsylvania Accelerator and, except for a normalization difference of 10%, are fairly well represented by a phase-shift fit. The pole-extrapolation method of Chew was used to extract the pion-nucleon coupling constant f2 from the back-angle portion of the data. The value obtained, f2=0.069, is somewhat smaller than the values 0.0735–0.0790 obtained from analyses of pion-nucleon scattering, tending to confirm the need for an upward renormalization of the angular distribution by ∼10%.

1 data table

No description provided.


Electroproduction of $\phi(1020)$ mesons at $1.4\leq Q^2\leq$ 3.8 GeV$^2$ measured with the CLAS spectrometer

The CLAS collaboration Santoro, J.P. ; Smith, E.S. ; Garc con, M. ; et al.
Phys.Rev.C 78 (2008) 025210, 2008.
Inspire Record 781974 DOI 10.17182/hepdata.50913

Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.

5 data tables

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

Axis error includes +- 18.6/18.6 contribution.

More…

Energy dependence of the analyzing power for the p p ---> pi+ d reaction in the energy region 500-MeV - 800-MeV

Yoshida, H.Y. ; Shimizu, H. ; Ohnuma, H. ; et al.
Nucl.Phys.A 541 (1992) 443-452, 1992.
Inspire Record 320645 DOI 10.17182/hepdata.36702

The energy dependence of the analyzing power A y for the pp → π + d reaction was measured during polarized beam acceleration from 500 to 800 MeV, using an internal target inserted into the beam every acceleration cycle. The measurements were made with the pion laboratory angle fixed at 68° and with incident proton energy bins varying from 10 to 30 MeV in width. The statistical accuracy per bin is ΔA y ⋍ 0.06 .

1 data table

Statistical errors onnly.


Energy dependent measurements of the p p elastic analyzing power and narrow dibaryon resonances

Kobayashi, Y. ; Kobayashi, K. ; Nakagawa, T. ; et al.
Nucl.Phys.A 569 (1994) 791-820, 1994.
Inspire Record 320015 DOI 10.17182/hepdata.38528

The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.

1 data table

Statistical errors only.


Exclusive electroproduction of Phi mesons at 4.2-GeV.

The CLAS collaboration Lukashin, K. ; Smith, E.S. ; Adams, G.S. ; et al.
Phys.Rev.C 64 (2001) 059901, 2001.
Inspire Record 552246 DOI 10.17182/hepdata.38589

We studied the exclusive reaction e p --> e' p' phi using the phi --> K^+ K^- decay mode. The data were collected using a 4.2 GeV incident electron beam and the CLAS detector at Jefferson Lab. Our experiment covers the range in Q^2 from 0.7 to 2.2 GeV^2, and W from 2.0 to 2.6 GeV. Taken together with all previous data, we find a consistent picture of phi production on the proton. Our measurement shows the expected decrease of the t-slope with the vector meson formation time c Delta tau below 2 fm. At = 0.6 fm, we measure b_phi = 2.27 +- 0.42 GeV^-2. The cross section dependence on W as W^{0.2+-0.1} at Q^2 = 1.3 GeV^2 was determined by comparison with phi production at HERA after correcting for threshold effects. This is the same dependence as observed in photoproduction.

3 data tables

Slope of the DSIG/DT distribution in different Q**2 regions.

Cross section as a function of Q**2 and W.

The differential cross section for exclusive PHI electroproduction off the photon, (TP=T-TMIN).


Exclusive eta production in proton-proton reactions.

Balestra, F. ; Bedfer, Y. ; Bertini, R. ; et al.
Phys.Rev.C 69 (2004) 064003, 2004.
Inspire Record 653991 DOI 10.17182/hepdata.25225

Differential cross sections for the exclusive reaction p⃗p→ppη observed via the η→π+π−π0 decay channel have been measured at Tbeam=2.15GeV, 2.50GeV, and 2.85GeV (excess energies 324MeV, 412MeV, and 554MeV). The influence of the N(1535)S11 resonance is clearly seen in the invariant mass and momentum dependent differential cross sections. The extracted resonance parameters are compatible with existing data. No significant evidence for further resonance contributions has been found. In addition, angular distributions of the ppη final state have been measured. The polar angle distribution of the η shows an anisotropy with respect to the beam axis for the lowest beam energy, which vanishes for the higher energies. The sign of this anisotropy is negative and expected to be sensitive to the dominant production mechanism. In contrast, the proton polar angle in the pp rest frame tends to be more strongly aligned along the beam axis with increasing beam energy. The analyzing power Ay is compatible with zero for all beam energies.

8 data tables

Differential cross section for incident kinetic energy 2.15 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.50 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.85 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

More…