INELASTIC ELECTRON PHOTON SCATTERING AT MODERATE FOUR MOMENTUM TRANSFERS

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 99 (1981) 287-291, 1981.
Inspire Record 155594 DOI 10.17182/hepdata.27125

We present new high statistics data on hadron production in photon-photon reactions. The data are analyzed in terms of an electron-photon scattering formalism. The dependence of the total cross section of Q 2 , the four-momentum transfer squared of the scattered electron, and on the mass W of the hadronic system is investigated. The data are compared to predictions from Vector-Meson Dominance and the quark model.

3 data tables

No description provided.

DEPENDENCE ON VISIBLE HADRONIC INVARIANT MASS.

Data read from graph.


First Measurement of the Photon Structure Function F2

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 107 (1981) 168-172, 1981.
Inspire Record 167681 DOI 10.17182/hepdata.31043

Using data taken at PETRA we present results on deep inelastic electron photon scattering at momentum transfers 1 < Q 2 < 15 GeV 2 . The results are expressed in terms of the photon structure function F 2 and are compared with QCD predictions and “hadronic” models of the photon. The pointlike component of the photon is found to be dominant.

2 data tables

Data read from graph.. Data for W < 3.5 in Berger et al. 1981, PL 99B,287 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1164> RED = 1164 </a>).

PHOTON STRUCTURE FUNCTION. NUMERICAL VALUES OF DATA ON FIGURE SUPPLIED BY W. WAGNER.


Experimental Study of the Photon Structure Function F(2) in the High $Q^2$ Region

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 121 (1983) 203-208, 1983.
Inspire Record 180758 DOI 10.17182/hepdata.30781

We report on a measurement of the process e + e − →e + e − + hadrons, where one of the scattered electrons is detected at large angles, with an average Q 2 of 23 GeV. The results are analysed in terms of the photon structure function F 2 and are compared with QCD predictions.

3 data tables

Data read off graph.

Data read off graph.

Data read off graph.


Experimental Study of the Hadronic Photon Structure Function

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Gumpel, U. ; et al.
Phys.Lett.B 126 (1983) 391-397, 1983.
Inspire Record 198110 DOI 10.17182/hepdata.30720

We have measured at PETRA the process e γ → e + hadrons at an average Q 2 value of 9 GeV 2 / c 2 . The total number of observed events attributed to this process is 215. Our data are compared to calculations based on the estimation of the photon structure function F 2 in the quark parton model and in QCD.

1 data table

No description provided.


Measurement of the Photon Structure Function F2 (x, Q**2)

The PLUTO collaboration Berger, Christoph ; Deuter, A. ; Genzel, H. ; et al.
Phys.Lett.B 142 (1984) 111-118, 1984.
Inspire Record 201376 DOI 10.17182/hepdata.30545

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Photon Structure Function f(2)Gamma at Q**2 from 7-GeV/c**2 to 70-GeV/c**2

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Gerhards, R. ; et al.
Z.Phys.C 31 (1986) 527, 1986.
Inspire Record 228251 DOI 10.17182/hepdata.15858

We have measured the processe+e−→e+e−+hadrons, where one of the scattered electrons was detected at large angles, withQ2 ranging from 7 to 70 (VeV/c)2. The photon structure functionF2γ(x, Q2) was determined at an averageQ2 of 23 (GeV/c)2. The measurements were compared to theoretical predictions of the Quark Parton Model and Quantum Chromodynamics. In both models a hadronic part was added. Within the errors the data are in agreement with the QPM using quark masses of 300 MeV/c2 for the light quarks. The data also agree with a QCD calculation including higher order corrections. A fit yielded a\(\Lambda _{\overline {MS} } \) value of 140−65+190 MeV, where the errors include statistical and systematic uncertainties.

1 data table

No description provided.


Measurement and QCD Analysis of the Photon Structure Function F2 (x, Q**2)

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Lackas, W. ; et al.
Nucl.Phys.B 281 (1987) 365, 1987.
Inspire Record 230592 DOI 10.17182/hepdata.33588

We present a measurement of the hadronic structure function F 2 γ ( x , Q 2 ) of the photon in the Q 2 range from 10 to 100 GeV 2 . Data were taken with the PLUTO detector at the e + e - storage ring PETRA. This measurement and previous PLUTO measurements in the Q 2 range of 1.5 to 16 GeV 2 are compared with higher order QCD calculations. The structure function is consistent with the predicted log Q 2 behaviour when charm contributions are subtracted. The x dependence can be well described for 0.1 < x < 0.9 by the regularization scheme of Antoniadis and Grunberg. Within their scheme the data yield a value of Λ MS = 183 + 65/ −40( stat. ) + 46/ −36( sys. ) MeV for the QCD scale parameter.

5 data tables

Data read from graph.

Data read from graph.

Data read from graph.

More…

OBSERVATION OF SCALING OF THE PHOTON STRUCTURE FUNCTION F2 (gamma) AT LOW Q**2

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 58 (1987) 97, 1987.
Inspire Record 233595 DOI 10.17182/hepdata.20136

The structure function F2γ for a quasireal photon has been measured in the reaction ee→eeX for Q2 in the range 0.2<Q2<7 GeV2, by use of 9200 multihadron events obtained with the TPC/Two-Gamma detector at the SLAC storage ring PEP. The data have been corrected for detector effects by a regularized unfolding procedure and are presented as F2γ(x,Q2). The structure function shows scaling in the region 0.3<Q2<1.6 GeV2, x<0.3, and rises for higher Q2 and x>0.1. Below Q2=0.3 GeV2, scaling breaks down in accordance with the finite cross-section bound for real photons.

4 data tables

Data read from graph.

Data read from graph.

Data read from graph.

More…

Total cross-section of two photon production of hadrons

Baru, S.E. ; Beilin, M.V. ; Blinov, A.E. ; et al.
Z.Phys.C 53 (1992) 219-224, 1992.
Inspire Record 33675 DOI 10.17182/hepdata.14767

The total cross section for γγ→hadrons was measured as a function of the invariant massW of the system (1.25 to 4.25 GeV) at thee+e−-collider VEPP-4 with the detector MD-1. For the first time the data were obtained by detecting both scattered leptons with almost zero emission angles. The mean squared four momentum transfer 〈q2〉 is −0.005 GeV2, the rmsW resolution is 100–250 MeV. The data on the mean charged multiplicity 〈nC〉 are well described by the function 〈nC〉=(1.62 ±0.37)+(1.83±0.45)·ln(W(GeV)). TheW dependence of the total cross section is consistent with the theoretical prediction σ(nb)=240+270/W(GeV).

2 data tables

No description provided.

No description provided.


Measurement of the photon structure function F2 (gamma) in the reaction e+ e- ---> e+ e- + hadrons at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 61 (1994) 199-208, 1994.
Inspire Record 358863 DOI 10.17182/hepdata.48474

We present measurements of the hadronic photon structure functionF2γ(x), in twoQ2 ranges with mean values of 5.9 GeV2 and 14.7 GeV2. The data were taken by the OPAL experiment at LEP, with\(\sqrt s\) close to theZ0 mass and correspond to an integratede+e− luminosity of 44.8 pb−1. In the context of a QCD-based model we find the quark transverse momentum cutoff separating the vector meson dominance (VMD) and perturbative QCD regions to be 0.27±0.10 GeV. We confirm that there is a significant pointlike component of the photon when the probe photon hasQ2>4 GeV2. Our measurements extend to lower values ofx than any previous experiment, and no increase ofF2γ(x) is observed.

2 data tables

Additional overall systematic error 5.9% not included.

Additional overall systematic error 5.9% not included.