A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson ${\rm K^0_S}$ and the double-strange baryon $\Xi^{\pm}$ is measured, in each event, in the azimuthal direction of the highest-$p_{\rm T}$ particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=13$ TeV using the ALICE detector at the LHC. The per-trigger yields of ${\rm K^0_S}$ and $\Xi^{\pm}$ are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading $\Xi^{\pm}$/${\rm K^0_S}$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of $\Xi^{\pm}$ with respect to ${\rm K^0_S}$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$ per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$.
Yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $-1.2<\Delta\eta<1.2$ and $-\pi/2<\Delta\varphi<3/2\pi$.
Transverse-to-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $0.86<|\Delta\eta|<1.2$ and $0.96<\Delta\varphi<1.8$.
Toward-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $|\Delta\eta|<0.86$ and $|\Delta\varphi|<1.1$.
The transverse momentum ($p_{\rm T}$) differential production cross section of the promptly produced charm-strange baryon $\Xi_{\rm c}^{0}$ (and its charge conjugate $\overline{\Xi_{\rm c}^{0}}$) is measured at midrapidity via its hadronic decay into ${\rm \pi^{+}}\Xi^{-}$ in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector at the LHC. The $\Xi_{\rm c}^{0}$ nuclear modification factor ($R_{\rm pPb}$), calculated from the cross sections in pp and p$-$Pb collisions, is presented and compared with the $R_{\rm pPb}$ of $\Lambda_{\rm c}^{+}$ baryons. The ratios between the $p_{\rm T}$-differential production cross section of $\Xi_{\rm c}^{0}$ baryons and those of $\mathrm {D^0}$ mesons and $\Lambda_{\rm c}^{+}$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt $\Xi^0_{\rm c}$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p$-$Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity extrapolated down to $p_{\rm T}$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p$-$Pb collisions at midrapidity.
Prompt $\Xi_\mathrm{c}^0$ productions cross-section as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
$\Xi_\mathrm{c}^0~R_\mathrm{pPb}$ as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
$\Xi_\mathrm{c}^0/\mathrm{D}^0$ ratio as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
This Letter presents the first measurements of the groomed jet radius $R_\mathrm{g}$ and the jet girth $g$ in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables $R_\mathrm{g}$ and $g$ provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb$^{-1}$ and 301 pb$^{-1}$, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum $p_\mathrm{T}^\gamma$$>$ 100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum $p_\mathrm{T}^\text{jet}$ such that $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4. The measured $R_\mathrm{g}$ and $g$ distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.8, i.e., those that closely balance the photon $p_\mathrm{T}^\gamma$, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with $p_\mathrm{T}^\text{jet} / p_\mathrm{T}^\gamma$$>$ 0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.
Unfolded jet girth distribution in PbPb normalized to the number of jets that pass the $x_J$>0.4 selection. All systematic uncertainties are bin-to-bin fully correlated (allowing for sign-changes bin-to-bin).The covaraince matrices are provided for the statistical uncertainties from data and MC in this HepData record.
Covariance matrix of the statistical uncertainty in data for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.
Covariance matrix of the statistical uncertainty in MC for the unfolded jet girth distribution in PbPb for jets that pass the $x_J$>0.4 selection.The bin indices correspond to the bins used in the jet girth distribution.
Measurements of the $p_{\rm T}$-dependent flow vector fluctuations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [1] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the $p_{\rm T}$-dependent flow vector fluctuations at $\sqrt{s_{_{\rm NN}}} = 5.02~\mathrm{TeV}$ with two-particle correlations. Significant $p_{\rm T}$-dependent fluctuations of the $\vec{V}_{2}$ flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to $\sim$15% being present in the 5% most central collisions. In parallel, no evidence of significant $p_{\rm T}$-dependent fluctuations of $\vec{V}_{3}$ or $\vec{V}_{4}$ is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than $5\sigma$ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high $p_{\rm T}$, which might be biased by $p_{\rm T}$-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be re-examined to improve our understanding of initial conditions, quark--gluon plasma properties, and the dynamic evolution of the created system.
The ratio $v_{2}{2}/v_2[2]$ as a function of $p_{\rm T}$ in different centrality intervals
The ratio $v_{3}{2}/v_3[2]$ as a function of $p_{\rm T}$ in different centrality intervals
The ratio $v_{4}{2}/v_4[2]$ as a function of $p_{\rm T}$ in different centrality intervals
The $p_{\rm T}$-differential production cross sections of non-prompt ${\rm D^0}$, ${\rm D^+}$, and ${\rm D_s^+}$ mesons originating from beauty-hadron decays are measured in proton$-$proton collisions at a centre-of-mass energy $\sqrt{s}=13$ TeV. The measurements are performed at midrapidity, $|y| < 0.5$, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons, $f_{\rm{s}}/(f_{\rm{u}} + f_{\rm{d}})$, is found to be $0.114 \pm 0.016~{\rm (stat.)} \pm 0.006~{\rm (syst.)} \pm 0.003~{\rm (BR)} \pm 0.003~{\rm (extrap.)}$. This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at $\sqrt{s} = 5.02$ and 13 TeV, showing a hardening of the non-prompt D-meson $p_{\rm T}$-differential production cross section at higher $\sqrt{s}$. Finally, the ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, and $\Lambda_{\rm c}^+$ hadron measurements, obtaining ${\rm d}\sigma/{\rm d}y = 75.2\pm 3.2~(\mathrm{stat.}) \pm 5.2~(\mathrm{syst.})^{+12.3}_{-3.2} ~(\mathrm{extrap.})\text{ } \rm \mu b \;.$
$p_{\mathrm{T}}$-differential non-prompt $\mathrm{D}^{0}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{0}\rightarrow\mathrm{K}^-\pi^+$: $(3.95 \pm 0.03)\%$. Global relative uncertainty on BR: $0.8\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential non-prompt $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}\rightarrow\mathrm{K}^-\pi^+\pi^+$: $(9.38 \pm 0.16)\%$. Global relative uncertainty on BR: $1.7\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}_\mathrm{s}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}_\mathrm{s}\rightarrow\phi\pi^+\rightarrow\mathrm{K}^+\mathrm{K}^-\pi^+$: $(2.22 \pm 0.06)\%$. Global relative uncertainty on BR: $2.7\%$ Global relative uncertainty on luminosity: $1.6\%$
Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb$^{-1}$. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 $\pm$ 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.
The event fraction distribution as a function of the charged-particle multiplicity, $N_{\mathrm{ch}}$, within the kinematic range of $|\eta|<0.5$ and extrapolated to the full $p_{\mathrm{T}}$ range, in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV. The $N_{\mathrm{ch}}$ value is normalized by its value in the $0-5\%$ centrality class ($N_{\mathrm{ch}}^{0}$).
The average transverse momentum of charged particles, $\langle p_{\mathrm{T}}\rangle$, as a function of the charged-particle multiplicity, $N_{\mathrm{ch}}$, within the kinematic range of $|\eta|<0.5$ and extrapolated to the full $p_{\mathrm{T}}$ range in PbPb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV. Both $\langle p_{\mathrm{T}}\rangle$ and $N_{\mathrm{ch}}$ are normalized by their values in the $0-5\%$ centrality class (${\langle p_{\mathrm{T}}\rangle}^{0}$ and $N_{\mathrm{ch}}^{0}$).
The speed of sound, $c^2_{\mathrm{s}}$, as a function of the effective temperature, $T_{\mathrm{eff}}$, with the CMS data point obtained from ultra-central PbPb collision data at $\sqrt{s_{_{\mathrm{NN}}}}=5.02$ TeV.
This Letter presents the most precise measurement to date of the matter-antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, $\mu_Q=-0.18\pm0.90$ MeV and $\mu_B=0.71\pm0.45$ MeV, with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, $\Omega$-baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity.
Antiparticle-to-particle yield ratio, 0-5% centrality
Antiparticle-to-particle yield ratio, 5-10% centrality
Antiparticle-to-particle yield ratio, 10-30% centrality
The dependence of $\mathrm{f}_{0}$(980) production on the final-state charged-particle multiplicity in p$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is reported. The production of $\mathrm{f}_{0}$(980) is measured with the ALICE detector via the $\mathrm{f}_0 (980) \rightarrow \pi^{+}\pi^{-}$ decay channel in a midrapidity region of $-0.5
Transverse momentum spectra in different multiplicity classes. Each spectrum is corrected for the branching ratio of (46 $\pm$ 6)% based on [Phys. Rev. Lett. 111 no. 6, (2013) 062001].
The ratio of transverse momentum spectrum to the NSD spectrum
The double ratio of particle yield of f0((980) to charged pions
K$^{+}$K$^{-}$ pairs may be produced in photonuclear collisions, either from the decays of photoproduced $\phi (1020)$ mesons, or directly as non-resonant K$^{+}$K$^{-}$ pairs. Measurements of K$^{+}$K$^{-}$ photoproduction probe the couplings between the $\phi (1020)$ and charged kaons with photons and nuclear targets. The kaon$-$proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K$^{+}$K$^{-}$ pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K$^{+}$K$^{-}$ production. There is significant K$^{+}$K$^{-}$ production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range $1.1 < M_{\rm{KK}} < 1.4$ GeV/$c^2$ above the $\phi (1020)$ resonance, for rapidity $|y_{\rm{KK}}|<0.8$ and $p_{\rm T,KK} < 0.1$ GeV/$c$, the measured coherent photoproduction cross section is $\mathrm{d}\sigma/\mathrm{d}y$ = 3.37 $\pm\ 0.61$ (stat.) $\pm\ 0.15 $ (syst.) mb. The center-of-mass energy per nucleon of the photon-nucleus (Pb) system $W_{\gamma \mathrm{Pb, n}}$ ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for $\phi (1020)$ photoproduction alone. The mass spectrum is fit to a cocktail consisting of $\phi (1020)$ decays, direct K$^{+}$K$^{-}$ photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K$^{+}$K$^{-}$ photoproduction are presented.
d$^2\sigma$/d$y$/d$p_T^2$ in bins of $p_{T,KK}^2$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .
d$^2\sigma$/d$y$/d$p_T^2$ in bins of $M_{KK}$ for $K^+K^-$ photoproduction in ultra-peripheral Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV .
In this letter, measurements of (anti)alpha production in central (0$-$10%) Pb$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV are presented, including the first measurement of an antialpha transverse-momentum spectrum. Owing to its large mass, the production of (anti)alpha is expected to be sensitive to different particle production models. The production yields and transverse-momentum spectra of nuclei are of particular interest because they provide a stringent test of these models. The averaged antialpha and alpha spectrum is compared to the spectra of lighter particles, by including it into a common blast-wave fit capturing the hydrodynamic-like flow of all particles. This fit is indicating that the (anti)alpha also participates in the collective expansion of the medium created in the collision. A blast-wave fit including only protons, (anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light nuclei are included in the fit. The coalescence parameter $B_4$ is well described by calculations from a statistical hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha substructure tend to underestimate the data.
Antialpha spectrum in 0-10% V0M centrality class
Alpha spectrum in 0-10% V0M centrality class
Average alpha and antialpha spectrum in 0-10% V0M centrality class