Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Diffractive dijet production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 6 (1999) 421-436, 1999.
Inspire Record 474949 DOI 10.17182/hepdata.44206

Interactions of the type ep -> eXY are studied, where the component X of the hadronic final state contains two jets and is well separated in rapidity from a leading baryonic system Y. Analyses are performed of both resolved and direct photoproduction and of deep-inelastic scattering with photon virtualities in the range 7.5 < Q^2 < 80 GeV^2. Cross sections are presented where Y has mass M_Y < 1.6 GeV, the squared four-momentum transferred at the proton vertex satisfies |t| < 1 GeV^2 and the two jets each have transverse momentum p^jet_T > 5 GeV relative to the photon direction in the rest frame of X. Models based on a factorisable diffractive exchange with a gluon dominated structure, evolved to a scale set by the transverse momentum p^hat_T of the outgoing partons from the hard interaction, give good descriptions of the data. Exclusive qqbar production, as calculated in perturbative QCD using the squared proton gluon density, represents at most a small fraction of the measured cross section. The compatibility of the data with a breaking of diffractive factorisation due to spectator interactions in resolved photoproduction is investigated.

6 data tables

Transverse momentum distribution for two jet production in photoproduction events (one entry per jet).

Transverse momentum distribution for two jet production in DIS events (one entry per jet).

Differential pseudo rapidity distribution in the lab frame for photoproduction data (one entry per jet).

More…

Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 67-83, 1999.
Inspire Record 472962 DOI 10.17182/hepdata.44219

Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.

6 data tables

Integrated D*+- cross sections from the decay channel (1) AND (2).

Differential cross section, as a function of transverse momentum, from decay channel (1).

Differential cross section, as a function of pseudo-rapidity, from channel (1).

More…

Forward jet production in deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 239-252, 1999.
Inspire Record 470499 DOI 10.17182/hepdata.44288

The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.

1 data table

The second systematic (DSYS) error is the correlated systematic error due to the scale uncertainty of the calorimeter.


Measurements of flavour dependent fragmentation functions in Z0 --> q anti-q events.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 7 (1999) 369-381, 1999.
Inspire Record 472637 DOI 10.17182/hepdata.49410

Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.

9 data tables

Fragmentation function for 'uds-quark' events.

Fragmentation function for 'c-quark' events.

Fragmentation function for 'b-quark' events.

More…

Photon and light meson production in hadronic Z0 decays.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 5 (1998) 411-437, 1998.
Inspire Record 470419 DOI 10.17182/hepdata.49498

The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the \pi^0, \eta, \rho(770)+-, \omega(782), \eta'(958) and a_0(980)+-. The particle multiplicities per hadronic Z^0 decay, extrapolated to the full energy range, are: <n_\gamma> = 20.97 +/- 0.02 +/- 1.15, <n_\pi^0> = 9.55 +/- 0.06 +/- 0.75, <n_\eta> = 0.97 +/- 0.03 +/- 0.11, <n_\rho^+-> = 2.40 +/- 0.06 +/- 0.43, <n_\omega> = 1.04 +/- 0.04 +/- 0.14, <n_\eta> = 0.14 +/- 0.01 +/- 0.02, <n_a_0+-> = 0.27 +/- 0.04 +/- 0.10. where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.

15 data tables

Particle multiplicities per hadronic decay extrapolated to the full energy range.

Photon fragmentation function.

Photon fragmentation function.

More…

Measurements of the structure of quark and gluon jets in hadronic Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Eur.Phys.J.C 17 (2000) 1-18, 2000.
Inspire Record 467225 DOI 10.17182/hepdata.49549

An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test

6 data tables

The measured jet broadening distributions (B) in quark and gluon jets seperately.

Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.

The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Production of f0(980), f2(1270) and Phi(1020) in hadronic Z0 decay.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 4 (1998) 19-28, 1998.
Inspire Record 467092 DOI 10.17182/hepdata.49558

Inclusive production of the f_0(980), f_2(1270) and \phi(1020) resonances has been studied in a sample of 4.3 million hadronic Z^0 decays from the OPAL experiment at LEP. A coupled channel analysis has been used for the f_0 in simultaneous fits to the resonances in inclusive \pi+\pi- and K+K- mass spectra. Fragmentation functions are reported for the three states. Total inclusive rates are measured to be 0.141 +/- 0.007 +/- 0.011 f_0, 0.155 +/- 0.011 +/- 0.018 f_2, and 0.091 +/- 0.002 +/- 0.003 \phi mesons per hadronic Z^0 decay. The production properties of the f_0, including those in three-jet events, are compared with those of the f_2 and \phi, and with the Lund string model of hadron production. All measurements are consistent with the hypothesis that the f_0 is a conventional qq(bar) scalar meson.

2 data tables

Total inclusive production rates.

Fragmentation functions. Additional systematic errors of 7.6 PCT for F0, 11.6 PCT for F2 and 3.5 PCT for PHI. The uncorrelated systematic errors for F0 and F2 are negligible in comparison to the other errors.


Observation of scaling violations in scaled momentum distributions at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 414 (1997) 428-443, 1997.
Inspire Record 449531 DOI 10.17182/hepdata.44514

Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of $x$ and $Q^2$ using the ZEUS detector. The evolution of the scaled momentum, $x_p$, with $Q^2,$ in the range 10 to 1280 $GeV^2$, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of $Q^2$.

11 data tables

No description provided.

No description provided.

No description provided.

More…