We report on coherent interactions in a 2.5 event/μb K − d exposure. The predominant channel studied is K − d → K − π + gp − d (415 events). We find strong Q- and L-production in the (K ππ ) system. The production mechanism determines I = 1 2 for both enhancements and a spin-parity in the series 0 − , 1 + ,2 − … . A spin-parity analysis shows the Q to be a 1 + object, while the L is 1 + or 2 − , although a higher spin cannot be excluded. The cross sections for Q and L production and other final states are presented.
CORRECTED FOR UNSEEN RECOIL DEUTERONS BY EXTRAPOLATION. (UNCORRECTED CROSS SECTIONS ARE THOSE OBSERVED WITH P(DEUT) > 140 MEV/C).
The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.
No description provided.
No description provided.
No description provided.
A sample of approximately 250 Λp interactions has been obtained in the Λ-hyperon momentum range of about 300 to 500 MeV/ c . An enhanced Λ-hyperon production rate was obtained by exposing an internally-mounted platinum target to the incident 1.5 GeV/ c meson beam. Cross sections and angular distributions are obtained for the reactions: Λ p → Λ p, Λ p → Σ o p and Λ p → Λ p π o . In the elastic channel, no strong evidence is seen near the Σ o p threshold for the presence of a 3 S 1 resonance, which has been reported, although there is some evidence for a small enhancement in this mass region. There is evidence for the presence of P-waves and probably also D-waves above about 800 MeV/ c , but not below this momentum.
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
At 3 GeV/ c , the total and differential cross sections of the reactions K − n → Y π − have been determined for nine S = −1 baryonic states. Backward peaks associated with a dip near u = −0.2 are observed in many cases. They have been interpreted, for the isospin-zero Y-states, in terms of a proton-exchange mechanism. The backward peaks in the reactions K − n → Λπ − and K − n → Σ o π − have been more quantitatively related to the backward π N → N π differential cross sections at the same energy. This comparison leads to the conclusion, that the first reaction is dominated by nucleon exchange, whereas the second one requires a more complex exchange mechanism.
No description provided.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured to determine the proton electromagnetic form factors at squared four-momentum transfers q 2 between 10 and 50 fm −2 . At these values of q 2 we measured angular distributions between 25° and 110° and in addition at 25° and 35° cross sections for q 2 from 2 to 20 fm −2 using the external electron beam of the Bonn 2.5 GeV electron synchrotron. Our results confirm deviations from the scaling law.
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
Axis error includes +- 2/2 contribution (NORMALIZATION ERROR).
Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.
No description provided.
FULL T REGION.
FULL T REGION.
Differential cross sections for electrons scattered inelastically from hydrogen have been measured at 18°, 26°, and 34°. The range of incident energy was 4.5 to 18 GeV, and the range of four-momentum transfer squared was 1.5 to 21 (GeVc)2. With the use of these data in conjunction with previously measured data at 6° and 10°, the contributions from the longitudinal and transverse components of the exchanged photon have been separately determined. The values of the ratio of the photoabsorption cross sections σSσT are found to lie in the range 0 to 0.5. The question of scaling of 2MpW1 and νW2 as a function of ω is discussed, and scaling is verified for a large kinematic range. Also, a new scaling variable which reduces to ω in the Bjorken limit is introduced which extends the scaling region. The behavior of σT and σS is also discussed as a function of ν and q2. Various weighted sum rules of νW2 are evaluated.
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Total cross-section data are presented for protons, positive pions and positive kaons on protons and deuterons in the momentum range 15 GeV/ c to 60 GeV/ c in 5 GeV/ c steps.
No description provided.
No description provided.
No description provided.
Coherent photoproduction of ϱ 0 and ω at E γ = 4.3 GeV is observed. The ratios ϱ 0 d/ ω d and ϱ 0 d/ ϱ 0 p are discussed and compared with theoretical predictions. By comparing our data with total photoabsorption cross sections we determine the direct vector meson-photon coupling to be γ ϱ 2 /4 π = 0.29 ± 0.06. With this value we find the VDM relations between photoproduction and Compton scattering well satisfied.
'1'.
'1'.
No description provided.
None
STATISTICAL ERRORS ONLY.