Date

Inclusive charged hadron elliptic flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 - 39 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 86 (2012) 054908, 2012.
Inspire Record 1119620 DOI 10.17182/hepdata.102951

A systematic study is presented for centrality, transverse momentum ($p_T$) and pseudorapidity ($\eta$) dependence of the inclusive charged hadron elliptic flow ($v_2$) at midrapidity($|\eta| < 1.0$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants ($v_2{4}$), are presented in order to investigate non-flow correlations and $v_2$ fluctuations. We observe that the difference between $v_2{2}$ and $v_2{4}$ is smaller at the lower collision energies. Values of $v_2$, scaled by the initial coordinate space eccentricity, $v_{2}/\varepsilon$, as a function of $p_T$ are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider ($\sqrt{s_{NN}}$ = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV). The $v_2(p_T)$ values for fixed $p_T$ rise with increasing collision energy within the $p_T$ range studied ($< 2 {\rm GeV}/c$). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of $v_{2}(p_{T})$. We also compare the $v_2$ results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.

12 data tables

The event plane resolutions for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV as a function of collision centrality.

The comparison of $v_2$ as a function of $p_T$ between GF-cumulant and Q-cumulant methods in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV.

The $p_T$ (> 0.2 GeV/c) and $\eta$ ($∣\eta∣$ < 1) integrated $v_2$ as a function of collision centrality for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.

More…

Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt{s} = 7 TeV with the TOTEM experiment

The TOTEM collaboration Antchev, G ; Atanassov, I. ; Avati, V. ; et al.
EPL 98 (2012) 31002, 2012.
Inspire Record 1115294 DOI 10.17182/hepdata.59403

The TOTEM experiment has measured the charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV for 5.3<|eta|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward eta region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ~3.4 GeV/c^2, corresponding to about 95% of the total inelastic cross-section. The dN_{ch}/deta has been found to decrease with |eta|, from 3.84 pm 0.01(stat) pm 0.37(syst) at |eta| = 5.375 to 2.38 pm 0.01(stat) pm 0.21(syst) at |eta| = 6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.

1 data table

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7 TeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >40 MeV and 5.3< absolute(pseudorapidity) <6.5.


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 376-382, 2012.
Inspire Record 1115720 DOI 10.17182/hepdata.59732

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

54 data tables

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.

More…

Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at sqrt(s)=0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 72 (2012) 2124, 2012.
Inspire Record 1115186 DOI 10.17182/hepdata.58857

Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.

7 data tables

pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

More…

Measurement of forward neutral pion transverse momentum spectra for $\sqrt{s}$ = 7TeV proton-proton collisions at LHC

The LHCf collaboration Adriani, O. ; Bonechi, L. ; Bongi, M. ; et al.
Phys.Rev.D 86 (2012) 092001, 2012.
Inspire Record 1115479 DOI 10.17182/hepdata.59925

The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\sqrt{s}=7$\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.

6 data tables

Production rate for PI0 production in the rapidity range 8.9-9.0.

Production rate for PI0 production in the rapidity range 9.0-9.2.

Production rate for PI0 production in the rapidity range 9.2-9.4.

More…

Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at \sqrt{s} = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 86 (2012) 112007, 2012.
Inspire Record 1115824 DOI 10.17182/hepdata.59998

The differential production cross section of electrons from semileptonic heavy-flavour hadron decays has been measured at mid-rapidity ($|y| < 0.5$) in proton-proton collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5 $<p_{\rm T}<$ 8 GeV/$c$. Predictions from a fixed order perturbative QCD calculation with next-to-leading-log resummation agree with the data within the theoretical and experimental uncertainties.

1 data table

Double differential cross section for heavy-flavour electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).


Measurement of charm production at central rapidity in proton-proton collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 191, 2012.
Inspire Record 1115187 DOI 10.17182/hepdata.62077

The $p_{\rm T}$-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D$^0$, D$^+$, and D$^{*+}$ in the rapidity range $|y|<0.5$, and for transverse momentum $1< p_{\rm T} <12$ GeV/$c$, were measured in proton-proton collisions at $\sqrt{s} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D$^0 \rightarrow $K$\pi$, D$^+ \rightarrow $K$\pi\pi$, D$^{*+} \rightarrow $D$^0\pi$, and their charge conjugates, and was performed on a $L_{\rm int} = 1.1$ nb$^{-1}$ event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at $\sqrt{s} = 2.76$ TeV and at 7 TeV was evaluated by extrapolating to the full phase space the $p_{\rm T}$-differential production cross sections at $\sqrt{s} = 2.76$ TeV and our previous measurements at $\sqrt{s} = 7$ TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.

6 data tables

Production cross section in |y| < 0.5 for prompt D0, D+, and D*+ mesons in pp collisions at sqrt(s) = 2.76 TeV, in transverse momentum intervals. The second (sys) error is the uncertainty on the respective branching ratios.

Visible production cross sections of prompt D mesons for |y|<0.5 in pp collisions at sqrts=2.76 and 7 TeV. The normalization systematic uncertainty of 1.9% (3.5%) at sqrts=2.76 (7) TeV and the decay BR uncertainties are not quoted here.

Production cross sections dsig/dy of D mesons, integrated over all pt for |y|<0.5. The second (sys) error is the from the luminosity uncertainty, the third from the branching-ratio uncertainties and the fourth is from the extrapolation uncertainty.

More…

Inclusive-jet photoproduction at HERA and determination of alphas

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Nucl.Phys.B 864 (2012) 1-37, 2012.
Inspire Record 1116258 DOI 10.17182/hepdata.62400

Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 < 1 GeV2 and gamma-p centre-of-mass energies in the region 142 < W(gamma-p) < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb-1. Jets were identified using the kT, anti-kT or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 < etajet < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of ETjet in different regions of etajet. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low ETjet and high etajet. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas2) terms. Values of alphas(Mz) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.

12 data tables

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ET for jet ETARAP -1 TO 2.5 . The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 17 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 21 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.

More…

Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\snn=2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 719 (2013) 18-28, 2013.
Inspire Record 1116150 DOI 10.17182/hepdata.62177

The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range $|\eta|<0.8$ at different collision centralities and as a function of transverse momentum, $p_{\rm T}$, out to $p_{\rm T}=20$ GeV/$c$. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for $p_{\rm T}>8$ GeV/$c$. The small $p_{\rm T}$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_{\rm T}=8$ GeV/$c$. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_{\rm T}=8$ GeV/$c$ indicating that the particle type dependence persists out to high $p_{\rm T}$.

16 data tables

Elliptic flow (v2) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

Elliptic flow (v2) estimated with four-particle cumulants measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

Triangular flow (v3) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.

More…