We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.
No description provided.
Enhanced production of strange baryons and anti-baryons at central rapidity in S-W and S-z.sbnd;S with respect to p-A reactions has been reported by the CERN experiments WA85 and WA94. The WA97 experiment is extending such a study to Pb Pb collisions making use of the newly developed silicon pixel detectors. Results on Λ, Ξ − and Ω − production in Pb Pb collisions at 158 A GeV/ c at central rapidity are presented. Transverse mass spectra and particle ratios are presented. Hyperon yields are given as a function of the collision centrality and compared with those obtained from p-Pb collisions using the same experimental setup.
No description provided.
No description provided.
No description provided.
We have studied the production of J/ ψ , ψ ′ and prompt muon pairs in the mass continuum from a sample of sulfur-uranium interactions at 200 GeV/c per nucleon. We report, in this letter, results obtained for the transverse momentum distributions and their dependence on the transverse energy released in the collision, used as an estimator of the centrality of the nucleus-nucleus interaction.
No description provided.
No description provided.
No description provided.
The double differential cross section of low momentum kaons ( ≤0.3GeV/c) from p+C collisions at subthreshold bombarding energies has been for the first time measured by the use of the CLAMSUD magnetic spectrometer installed at the CELSIUS storage ring. Invariant cross sections extracted from the data show a source rapidity shifted below the nucleon-nucleon rapidity, in agreement with the existence of multistep processes in the K+ production cross section. The total cross section of the inclusive reaction 12C(p,K+) at 1.2 GeV was extracted and compared with recent data systematics as a function of the proton bombarding energy.
No description provided.
The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.
The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.
No description provided.
At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The ratio of the exclusive production cross sections for φ and ω mesons has been measured in pp reactions at Tbeam=2.85GeV. The observed φ/ω ratio is (3.7±0.7−0.9+1.2)×10−3. After phase space corrections, this ratio is about a factor of 10 enhanced relative to naive predictions based upon the Okubo-Zweig-Iizuka rule, in comparison to an enhancement by a factor of ∼3 previously observed at higher energies. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the φ/ω ratio observed in specific channels of p¯p annihilation experiments.
No description provided.
The double differential cross section for pn→pp(1S0)π− at three beam energies has been extracted from the quasifree process pd→pppπ−. A comparison is carried out with single differential cross section measurements for 3He(π−,pn)n, where the pion is thought to be absorbed onto a pp(1S0) “diproton” state. A significant difference is observed in the shape of the angular distribution between the production and absorption data. This difference is ascribed to the effects of the 3He nuclear environment characterizing the absorption process; however, an adequate theoretical explanation is not available.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.