We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).
Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.
ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.
ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.
The two-spin parameter A LL in inclusive π 0 productionby longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for π 0 's at x F =0 with 1⩽ p t ⩽3 GeV/ c . The results exclude, at the 95% confidence level, values of A LL (pp) > 0.1 and < − 0.1 for π 0 's produced by protons, and values of A LL ( p p) > 0.1 and < −0.2 for incident antiprotons. The relevance of A LL (pp) for the gluon spin density is discussed. The data are in good agreement with “conventional”, small or zero, gluon polarization.
No description provided.
None
No description provided.
CONTINUUM MUONS ORIGINATE MAINLY FROM VECTOR MESON DECAYS, SEMI-LEPTONIC DECAYS OF D DBAR PAIRS AND FROM DRELL-YAN MECHANISM.
No description provided.
Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.
Measurements of the tranverse cross section differences.
Measurements of the tranverse cross section differences.
Measurement of the longitudinal cross section difference.
None
No description provided.
We report the measurements on partial production cross sections of the multiple helium fragments emitted in the interactions of Si28 ions at 14.5A GeV in nuclear emulsion. Interaction mean free paths of the helium fragments have been investigated on the basis of helium multiplicity and size of the target nucleus as a function of the distance from their production points. Multiplicity scaling in the produced helium fragments is also observed.
FIRST REACTION RESPECTS CENTRAL, SECOND - PERIPHERAL INELASTIC INTERACTION.
FIRST REACTION RESPECTS CENTRAL, SECOND - PERIPHERAL INTERACTION. THIRD REACTION RESPECT 0HE PRODUCTION.
MULT(FRAGT) IS AVERAGED NUMBER OF HEAVY TRACKS FROM THE TARGET NUCLEUS, MULT(SHOWER) IS AVERAGED NUMBER OF MINIMUM IONIZING SHOWER TRACKS WHICH INCLUDED THE NUMBER OF SINGLY CHARGED PROJECTILE PROTON TRACKS.
Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.
The cross sections are parametrized as A**POWER.
Production of multi-strange baryons and antibaryons is expected to be a useful indicator in the search for Quark-Gluon Plasma formation. Production of Ξ − and Ξ − has been observed for the first time in ultra-relativistic heavy ion interactions by the WA85 Experiment. We describe the procedure used to select these cascade candidates and show that Ξ − and Ξ − decays can be identified. Preliminary ratios of Ξ/Ξ production in sulphur-tungsten and proton-tungsten interactions are also presented.
PRODUCTION AT CENTRAL RAPIDITY. 123 XI- AND 53 XIBAR+ CANDIDATES.
PRODUCTION AT CENTRAL RAPIDITY. 82 XI- AND 22 XIBAR+ CANDIDATES.
Dimuon production m p-U, O-U and S-U collisions has been studied at 200 GeV/N. It is observed that 〈 p T 〉 and 〈 p 2 T 〉 of the J / Ψ transverse momentum distributions increase with the transverse energy of the ion induced reactions. Such a marked behaviour is not seen for muon pairs of the continuum.
No description provided.
No description provided.
No description provided.
New data are reported on antiproton annihilations at rest with production of Λ and K s 0 , using a streamer chamber with 3 He, 4 He and 20 Ne as gas targets. The data include Λ, K s 0 , ΛK s 0 and K s 0 K S 0 production rates and momentum distributions, π − momentum spectra, mean numbers of charged particles generally and of negatively charged particles separately for different reaction channels. The yields are compared to simple combinatorial calculations based on the extreme assumptions of Λ production via B = 1 or via B = 0 ( K ̄ rescattering) annihilations. Λ and K s 0 momentum spectra are compared to simple model calculations where B = 0 and B = 1 annihilations with and without final-state interactions are considered. A review of existing data on Λ and K s 0 production is presented, showing the dependence on the p ̄ momentum and on the mass number of the target.
No description provided.
No description provided.
No description provided.