A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> </ul> <b>Post-fit yields:</b> <ul> <li><a href="130199?version=1&table=Postfit%20yields%20Y(4S)">Y(4S)</a> <li><a href="130199?version=1&table=Postfit%20yields%20off-resonance">Off-resonance</a> </ul> <b>Exclusion limit:</b> <ul> <li><a href="130199?version=1&table=Expected%20and%20observed%20Limit">Expected limit and observed limit</a> </ul> <b>Efficiency:</b> <ul> <li><a href="130199?version=1&table=Selection%20efficiency">Selection efficiency as a function of $q^{2}$</a> </ul>
Yields in on-resonance data and as predicted by the simultaneous fit to the on- and off-resonance data, corresponding to an integrated luminosity of 63 and 9 fb$^{−1}$, respectively. The predicted yields are shown individually for charged and neutral B-meson decays and the five continuum background categories. The leftmost three bins belong to the first control region (CR1) with BDT$_{2} \in [0.93; 0.95]$ and the other nine bins correspond to the signal region (SR), three for each range of BDT$_{2} \in [0.95; 0.97; 0.99; 1.0]$. Each set of three bins is defined by $p_{T}(K^{+}) \in [0.5; 2.0; 2.4; 3.5] \rm{GeV}/c^{2}$.
Yields in off-resonance data and as predicted by the simultaneous fit to the on- and off-resonance data, corresponding to an integrated luminosity of 63 and 9 fb$^{−1}$, respectively. The predicted yields are shown individually for the five continuum background categories. The leftmost three bins belong to the third control region (CR3) with BDT$_{2} \in [0.93; 0.95]$ and the other nine bins correspond to the second control region (CR2), three for each range of BDT$_{2} \in [0.95; 0.97; 0.99; 1.0]$. Each set of three bins is defined by $p_{T}(K^{+}) \in [0.5; 2.0; 2.4; 3.5] \rm{GeV}/c^{2}$.
Studies of $CP$ violation and anomalous couplings of the Higgs boson to vector bosons and fermions are presented. The data were acquired by the CMS experiment at the LHC and correspond to an integrated luminosity of 137 fb$^{-1}$ at a proton-proton collision energy of 13 TeV. The kinematic effects in the Higgs boson's four-lepton decay H $\to$ 4$\ell$ and its production in association with two jets, a vector boson, or top quarks are analyzed, using a full detector simulation and matrix element techniques to identify the production mechanisms and to increase sensitivity to the Higgs boson tensor structure of the Higgs boson interactions. A simultaneous measurement is performed of up to five Higgs boson couplings to electroweak vector bosons (HVV), two couplings to gluons (Hgg), and two couplings to top quarks (Htt). The $CP$ measurement in the Htt interaction is combined with the recent measurement in the H $\to$$\gamma\gamma$ channel. The results are presented in the framework of anomalous couplings and are also interpreted in the framework of effective field theory, including the first study of $CP$ properties of the Htt and effective Hgg couplings from a simultaneous analysis of the gluon fusion and top-associated processes. The results are consistent with the standard model of particle physics.
Example description
Example description
Example description
A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model.
Summary of the impact of the systematic uncertainties on the extracted signal strength; for the case of a background-only simulated data set, i.e., assuming no contributions from the $\mathrm{H}^{\pm}$ and $\mathrm{H}^{\pm\pm}$ processes, and including a charged Higgs boson signal for values of $s_{\mathrm{H}}=1.0$ and $m_{\mathrm{H}_{5}}=500$ GeV in the GM model.
Expected signal and background yields from various SM processes and observed data events in all regions used in the analysis. The expected background yields are shown with their normalizations from the simultaneous fit for the background-only hypothesis, i.e., assuming no contributions from the $\mathrm{H}^{\pm}$ and $\mathrm{H}^{\pm\pm}$ processes. The expected signal yields are shown for $s_{\mathrm{H}}=1.0$ in the GM model. The combination of the statistical and systematic uncertainties is shown.
Distributions for signal, backgrounds, and data for the bins used in the simultaneous fit. The bins 1--32 (4$\times$8) show the events in the WW SR ($m_{\mathrm{jj}} \times m_{\mathrm{T}}$), the bins 33--46 (2$\times$7) show the events in the WZ SR ($m_{\mathrm{jj}} \times m_{\mathrm{T}}$), the 4 bins 47--50 show the events in the nonprompt lepton CR ($m_{\mathrm{jj}}$), the 4 bins 51--54 show the events in the tZq CR ($m_{\mathrm{jj}}$), and the 4 bins 55--58 show the events in the ZZ CR ($m_{\mathrm{jj}}$). The predicted yields are shown with their best fit normalizations from the simultaneous fit for the background-only hypothesis, i.e., assuming no contributions from the $\mathrm{H}^{\pm}$ and $\mathrm{H}^{\pm\pm}$ processes. Vertical bars on data points represent the statistical uncertainty in the data. The histograms for tVx backgrounds include the contributions from ttV and tZq processes. The histograms for other backgrounds include the contributions from double parton scattering, VVV, and from oppositely charged dilepton final states from tt, tW, $\mathrm{W}^{+}\mathrm{W}^{-}$, and Drell--Yan processes. The overflow is included in the last bin in each corresponding region. The lower panels show the ratio of the number of events observed in data to that of the total SM prediction. The hatched gray bands represent the uncertainties in the predicted yields. The solid lines show the signal predictions for values of $s_{\mathrm{H}}=1.0$ and $m_{\mathrm{H}_{5}}=500$ GeV in the GM model.
A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.
The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.
The reconstructed m$_{tb}$ distributions in data and expected background in validation region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.
The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2017. Yield in each bin is divided by the corresponding bin width.
Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.
Summary of LHCb measurements. Comparison of LHCb $\Delta m_s$ measurements from Refs. [8–11], the result presented in this article and their average. For the average, following systematic uncertainties are assumed to be fully correlated(:) zScale, MomentumScale, VeloAlignment and DecayTimeBias. The measurements are statistically uncorrelated.
The interaction of $\Lambda$ and $\Sigma$ hyperons (Y) with nucleons (N) is strongly influenced by the coupled-channel dynamics. Due to the small mass difference of the $\rm N \Lambda$ and $\rm N \Sigma$ systems, the sizeable coupling strength of the $\rm N \Sigma\leftrightarrow N \Lambda$ processes constitutes a crucial element in the determination of the N$\Lambda$ interaction. In this letter we present the most precise measurements on the interaction of p$\Lambda$ pairs, from zero relative momentum up to the opening of the $\rm N \Sigma$ channel. The correlation function in the relative momentum space for $\mathrm{p}\Lambda\oplus\overline{\mathrm{p}}\overline{\Lambda}$ pairs measured in high-multiplicity triggered pp collisions at $\sqrt{s}~=~13$ TeV at the LHC is reported. The opening of the inelastic N$\Sigma$ channels is visible in the extracted correlation function as a cusp-like structure occurring at relative momentum $k^{*}$ = 289 MeV/$c$. This represents the first direct experimental observation of the $\rm N \Sigma\rightarrow N \Lambda$ coupled channel in the p$\Lambda$ system. The correlation function is compared with recent chiral effective field theory calculations, based on different strengths of the $\rm N \Sigma\leftrightarrow N \Lambda$ transition potential. A weaker coupling, as possibly supported by the present measurement, would require a more repulsive three-body NN$\Lambda$ interaction for a proper description of the $\Lambda$ in-medium properties, which has implications on the nuclear equation of state and for the presence of hyperons inside neutron stars.
p-$\Lambda$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.
Neutral pion ($\pi^{0}$) and $\eta$ meson production cross sections were measured up to unprecedentedly high transverse momenta ($p_{\rm T}$) in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval $-1.3< y <0.3$ in the ranges of $0.4
Invariant differential cross section of PI0 produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.
Invariant differential cross section of PI0 produced in inelastic pp collisions at a centre-of-mass energy of 8 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 2.6% is not included in the systematic error.
Invariant differential cross section of ETA produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.
The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The v2 of Z bosons in PbPb collisions for various centrality bins.
The v2 of Z bosons in PbPb collisions for various centrality bins.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at $\sqrt{s}=200$ GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
The uncorrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.
The uncorrected SoftDrop groomed jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.
The fully corrected jet mass distribution for $R = 0.4$ anti-$k_{\rm{T}}$ jets with $20 < p_{\rm{T,jet}} < 25$ GeV$/c$. Data are reported beyond the x-axis upper limit of the figure, for future reference. Updated to correct a small bug that had shifted the jet mass to slightly smaller values.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.