Using the MD-1 detector at the VEPP-4e+e− strorage ring we have measured the inclusive Λ and370-1 production rates in direct Γ(1S) decays
The total cross section of the processe+e− →hadrons has been measured in the center-of-mass energy range between 7.25 and 10.34 GeV using the MD-1 detector at the VEPP-4 collider. The ratioR=σ(e+e− →hadrons)/σ(e+e− →μ+μ−) was found to be constant in this energy range with the average value of 3.58±0.02±0.14.
The process e+ e- -> phi -> K+ K- has been studied with the CMD-2 detector using about 542 000 events detected in the center-of-mass energy range from 1.01 to 1.034 GeV. The systematic error of the cross section is estimated to be 2.2%. The phi(1020) meson parameters in the phi -> K+K- decay channel have been measured: sigma_0(phi-> K+K-) = 2016 +- 8 +- 44 nb, m(phi) = 1019.441 +- 0.008 +- 0.080 MeV/c2, Gamma(phi) = 4.24 +- 0.02 +- 0.03 MeV, B(e+e-)B(K+K-) = (14.27 +- 0.05 +- 0.31)*10(-5).
We report a high-precision measurement of the ratio R of the total cross section for e+e−→hadrons to that for e+e−→μ+μ−, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R=3.96±0.09. This value of R is used to determine a value of the strong coupling constant αs of 0.23±0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.
The energy-energy correlation cross section for hadrons produced in electron-positron annihilation at a center-of-mass energy of 29 GeV has been measured with the MAC detector at SLAC. The result is corrected for the effects of detector resolution, acceptance, and initial-state radiation. The correlation is measured in two independent ways on the same data sample: the energy weights and angles are obtained either from the energy flow in the finely segmented total absorption calorimeters or from the momenta of charged tracks in the central drift chamber. This procedure helps reduce systematic errors by cross-checking the effects of the detector on the measurement, particularly important because the corrections depend on complex Monte Carlo simulations. The results are compared with the predictions of Monte Carlo models of complete second-order perturbative quantum chromodynamics and fragmentation, with the following conclusions: (1) fitting the asymmetry for large correlation angles gives values for αS of 0.120±0.006 in perturbation theory, 0.185±0.013 in the Lund string model, and values which vary from 0.105 to 0.140 (±0.01) in the incoherent jet models, depending on the gluon fragmentation scheme and the algorithm used for momentum conservation; and (2) the string fragmentation model provides a satisfactory description of the measured energy-energy correlation cross section, whereas incoherent jet formation does not.
We present measurements of forward-backward energy asymmetries of τ-lepton decay products from the reaction e+e−→τ+τ− in data collected with the MAC detector operating at the SLAC storage ring PEP at a center-of-mass energy of 29 GeV. The energy asymmetries for the decays τ→ντeν¯e, τ→ντμν¯μ, τ→ντπ, and τ→ντρ are interpreted as effects caused by the combination of maximally parity-violating weak τ decays and a longitudinal polarization produced by the interference of electromagnetic and weak processes. From the forward-backward polarization asymmetry AP=(0.06±0.07)×(1±0.011), we determine the coupling-constant product gaegvτ=(0.26 ±0.31)×(1±0.011). Assuming gae=-(1/2 as expected, we find gvτ=(-0.52±0.62)×(1±0.011), consistent with the prediction of the Glashow-Weinberg-Salam model of electroweak interactions. Alternatively, assuming the standard-model prediction of negligible polarization in τ-pair production, the leptonic energy spectra are used to measure the Michel parameter to be 0.79±0.10±0.10, consistent with the V-A hypothesis for the τν¯τ-W vertex.
We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.
We report on a CDF measurement of the total cross section and rapidity distribution, $d\sigma/dy$, for $q\bar{q}\to \gamma^{*}/Z\to e^{+}e^{-}$ events in the $Z$ boson mass region ($66
None
The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.