We report measurements of D ∗± production in interactions between 350 GeV/ c π − particles and nuclei. Reconstruction of the decay D ∗+ → D 0 π + and charge conugate, with D 0 identified via its decays to K − π + and K − π − π + π + , has allowed isolation of a sample of 611 ± 28 D ∗± mesons, produced at positive x F . Assuming a linear A-dependence, the cross-section per nucleon in the region x F > 0 is measured to be 1.41 ± 0.10 ± 0.11 μ b for D ∗+ and 1.84 ± 0.12 ± 0.15 μ b for D ∗− . We present measurements of differential cross-sections with respect to x F and P t 2 , and compare data for D ∗± (vector-meson) production with data for production of charmed pseudoscalar mesons.
No description provided.
Data on D0, DBAR0, D+, and D- meson production are taken from previous publication of this collaboration (see NP B495, 3).
No description provided.
Experiment WA82 studied charm production by a π − beam of 340 GeV/ c at the CERN Ω′ spectrometer, using a silicon microstrip vertex detector and an impact parameter trigger. Results on the x F distributions of D + and D − mesons are presented and discussed. A clear excess of D − over D + , increasing at high x F , is observed.
No description provided.
No description provided.
Charmed-meson production by 350 GeV/c π − particles incident on copper and tungsten targets has been studied in the WA92 experiment, performed at the CERN Ω′ spectrometer. Results obtained are reported and discussed. Reconstruction of decays from the set D 0 → K − π + D 0 → K − π − π + π + , D s + → φπ + and charge conjugates has yielded a sample of 7280 ± 108 charmed mesons, produced with χ F > 0, ( χ F ) = 0.18 and〈 p T 2 〉 = 1.86 ( GeV / c ) 2 . Assuming a relationship σ = σ 0 A α between the cross section, σ, per nucleus of mass A and the nucleonic cross section, σ 0 the α value found for the detected charmed particles is 0.95 ± 0.06 ± 0.03. Taking α = 1, the measured cross sections per nucleon for χ F > 0 production are 7.78 ± 0.14 ± 0.52 μ b for D 0 / D 0 , 3.28 ± 0.08 ± 0.29 μ b for D + /D − and 1.29 ± 0.16 ± 0.33 μ b for D s + /D s − . Differential cross sections with respect to χ F and p T 2 have been determined for the various types of charmed meson, and particle-antiparticle asymmetries have been analysed.
No description provided.
No description provided.
Nuclear dependence is fitted by SIG=CONST*A**POWER for CU and WT nuclei.
A sample of 475 events, in which two charmed-particle decays are observed, is analyzed to determine distributions of two-particle kinematic variables. One charmed particle with x F > 0 is fully reconstructed and the other is at least partially recontructed. The distributions of Δø and p T 2 are compared with a next-to-leading order QCD calculation.
No description provided.
We have searched for the decay D 0 → μ + μ − among 1.25 × 10 5 μ + μ − pairs produced by 350 GeV/ c π − particles interacting in copper and tungsten targets. Using a high-resolution silicon-microstrip detector followed by a large-acceptance magnetic spectrometer and a muon filter we are able to discriminate between prompt and non-prompt muons and to measure dimuon masses. No candidate compatible with a D 0 → μ + μ − decay has been found, allowing us to set an upper limit on the branching fraction B( D 0 → μ + μ − ) of 7.6 × 10 −6 at the 90% confidence level.
NUCLEUS OF TARGET=CU+WT.
Using a sample of 10 8 triggered events, produced in π − −Cu interactions at 350 GeV/ c , we have identified 26 beauty events. The estimated background in this sample is 0.6 ± 0.6 events. From these data, assuming a linear A-dependence, we measure a beauty production cross section integrated over all χ F of 5.7 −1.1 +1.3 (stat.) −0.5 +0.6 (syst.) nb/N.
The production of a $W$ boson in association with a single charm quark is studied using 140 $\mathrm{fb}^{-1}$ of $\sqrt{s} = 13\,\mathrm{TeV}$ proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The charm quark is tagged by a charmed hadron, reconstructed with a secondary-vertex fit. The $W$ boson is reconstructed from an electron/muon decay and the missing transverse momentum. The mesons reconstructed are $D^{\pm} \to K^\mp \pi^\pm \pi^\pm$ and $D^{*\pm} \to D^{0} \pi^\pm \to (K^\mp \pi^\pm) \pi^\pm$, where $p_{\text{T}}(e, \mu) > 30\,\mathrm{GeV}$, $|\eta(e, \mu)| < 2.5$, $p_{\text{T}}(D) > 8\,\mathrm{GeV}$, and $|\eta(D)| < 2.2$. The integrated and normalized differential cross-sections as a function of the pseudorapidity of the lepton from the $W$ boson decay, and of the transverse momentum of the meson, are extracted from the data using a profile likelihood fit. The measured fiducial cross-sections are $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{+}) = 50.2\pm0.2\,\mathrm{(stat.)}\,^{+2.4}_{-2.3}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{-}) = 48.5\pm0.2\,\mathrm{(stat.)}\,^{+2.3}_{-2.2}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{*+}) = 51.1\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$, and $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{*-}) = 50.0\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. The ratio of charm to anti-charm production cross-sections is studied to probe the $s$-$\bar{s}$ quark asymmetry and is found to be $R_c^\pm = 0.971\pm0.006\,\mathrm{(stat.)}\pm0.011\,\mathrm{(syst.)}$.
Measured fiducial cross-sections times the single-lepton-flavor W boson branching ratio.
Measured cross section ratios for the W+D production. The $R_{c}(D^{(*)})$ observable is obtained by combining the individual measurements of $R_{c}(D^{+})$ and $R_{c}(D^{*+})$ as explained in the text. The displayed cross sections are integrated over each differential bin.
Measured $p_{\mathrm{T}}(D^{+})$ differential fiducial cross-section times the single-lepton-flavor W boson branching ratio in the $W^{-}+D^{+}$ channel. The last $p_{\mathrm{T}}$ bin has no upper bound. The displayed cross sections are integrated over each differential bin.
This Letter presents a constraint on the total width of the Higgs boson ($\Gamma_H$) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on $\Gamma_H$ is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV).
CERN experiment WA89 has studied charmed particles produced by a Sigma^- beam at 340 GeV/c on nuclear targets. Production of particles which have light quarks in common with the beam is compared to production of those which do not. Considerable production asymmetries between D^- and D^p, D_s^ and D_s^+ and Lambda_c and Antilambda_c are observed. The results are compared with pion beam data and with theoretical calculations.
The expectation values, and the lower limits, of the measured asymmetries between D+ and D- production. Statistical errors only are presented.
The expectation values, and the lower limits, of the measured asymmetries between D/S+ and D/S- production. Statistical errors only are presented.
The expectation values, and the lower limits, of the measured asymmetries between LAMBDA/C+ and LAMBDA/CBAR- production. Statistical errors only are presented.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.