None
No description provided.
In the experiment with the SND detector at the VEPP-2000 $e^+e^-$ collider the cross section for the process $e^+e^-\to\eta\pi^+\pi^-$ has been measured in the center-of-mass energy range from 1.22 to 2.00 GeV. Obtained results are in agreement with previous measurements and have better accuracy. The energy dependence of the $e^+e^-\to\eta\pi^+\pi^-$ cross section has been fitted with the vector-meson dominance model. From this fit the product of the branching fractions $B(\rho(1450)\to\eta\pi^+\pi^-)B(\rho(1450)\to e^+e^-)$ has been extracted and compared with the same products for $\rho(1450)\to\omega\pi^0$ and $\rho(1450)\to\pi^+\pi^-$ decays. The obtained cross section data have been also used to test the conservation of vector current hypothesis.
The c.m. energy ($\sqrt{s}$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N$), radiative-correction factor ($1 + \delta$), measured $e^+e^- \to \eta \pi^+\pi^-$ Born cross section ($\sigma_B$). For the number of events and cross section the statistical error is quoted. The systematic uncertainty on the cross section is 8.3% at $\sqrt{s}<1.45$ GeV, 5.0% at $1.45<\sqrt{s}<1.60$ GeV, and 7.8% at $\sqrt{s}>1.60$ GeV.
We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).
Differential cross sections for dijet photoproduction and this process in association with a leading neutron, e+ + p -> e+ + jet + jet + X (+ n), have been measured with the ZEUS detector at HERA using an integrated luminosity of 40 pb-1. The fraction of dijet events with a leading neutron was studied as a function of different jet and event variables. Single- and double-differential cross sections are presented as a function of the longitudinal fraction of the proton momentum carried by the leading neutron, xL, and of its transverse momentum squared, pT**2. The dijet data are compared to inclusive DIS and photoproduction results/ they are all consistent with a simple pion-exchange model. The neutron yield as a function of xL was found to depend only on the fraction of the proton beam energy going into the forward region, independent of the hard process. No firm conclusion can be drawn on the presence of rescattering effects.
The differential cross section as a function of jet transverse energy for dijet photon production both without and with a leading neutron, together with their ratio.
The differential cross section as a function of jet pseudorapidity for dijet photon production both without and with a leading neutron, together with their ratio.
The differential cross section as a function of x_photon, the fraction of the photon 4-momenta entering the hard scattering, for dijet photon production both without and with a leading neutron, together with their ratio.
The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.
J/psi differential production cross section in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
J/psi transverse momentum distribution in sqrt(s).
Deeply virtual Compton scattering has been measured in e^+p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb^-1. Cross sections are presented as a function of the photon virtuality, Q^2, and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q^2>~1.5 GeV^2 and 40<W<170 GeV. A subsample of events in which the scattered proton is measured in the leading proton spectrometer, corresponding to an integrated luminosity of 31.3 pb^-1, is used for the first direct measurement of the differential cross section as a function of t, where t is the square of the four-momentum transfer at the proton vertex.
The DVCS cross section as a function of Q**2.
The DVCS cross section as a function of W.
The DVCS cross section as a function of W in four Q**2 regions.
The cross section of the process e+e-\to\mu+\mu- was measured in the SND experiment at the VEPP-2M e+e- collider in the energy region \sqrt{s}=980, 1040 -- 1380 MeV. The event numbers of the process e+e-\to\mu+\mu- were normalized to the integrated luminosity measured using e+e-\to e+e- and e+e-\to\gamma\gamma processes. The ratio of the measured cross section to the theoretically predicted value is 1.006\pm 0.007 \pm 0.016 and 1.005 \pm 0.007 \pm 0.018 in the first and second case respectively. Using results of the measurements, the electromagnetic running coupling constant \alpha in the energy region \sqrt{s}=1040 -- 1380 MeV was obtained <1/\alpha> = 134.1\pm 0.5 \pm 1.2 and this is in agreement with theoretical expectation.
The E+ E- --> MU+ MU- cross section obtained using the (GAMMA GAMMA) luminosity measurement.
The measured E+ E- --> E+ E- cross section in the electron angle 30 to 150 degrees.
Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of 127 pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different colour configurations. Fixed-order perturbative QCD calculations assuming the values of the colour factors C_F, C_A and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of colour configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.
Integrated 3-jet photoproduction cross section.
Integrated 3-jet cross sections in NC DIS.
Normalized differential 3-jet photoproduction cross section as a function of THETA(H).
The cross section of the process e^+e^-\to \pi^+\pi^- was measured in the SND experiment at the VEPP-2M collider in the energy region 400<\sqrt[]{s}<1000 MeV. This measurement was based on about 12.4 \times 10^6 selected collinear events, which include 7.4\times 10^6 e^+e^-\to e^+e^-, 4.5\times 10^6 e^+e^-\to\pi^+\pi^- and 0.5\times 10^6 e^+e^-\to\mu^+\mu^- selected events. The systematic uncertainty of the cross section determination is 1.3 %. The \rho-meson parameters were determined: m_\rho=774.9\pm 0.4\pm 0.5 MeV, \Gamma_\rho=146.5\pm 0.8\pm 1.5 MeV, \sigma(\rho\to\pi^+\pi^-)=1220\pm 7\pm 16 nb as well as the parameters of the G-parity suppressed decay \omega\to\pi^+\pi^-: \sigma(\omega\to\pi^+\pi^-)=29.9\pm 1.4\pm 1.0 nb and \phi_{\rho\omega} = 113.5\pm 1.3\pm 1.7 degree.
Cross section taking into account the radiative corrections due to the initial and final state radiation.
Cross section and form factor after the radiative corrections have been undressed.
Undressed cross without vacuum polarization but with the final state radiation.
Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.
Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.
The differential cross section as a function of X(NAME=POMERON).
The differential cross section as a function of transverse momentum.