Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \to \bar{\nu}X, for negative four-momentum transfer squared Q^2 > 400 GeV^2 and inelasticity y<0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q^2 and found to be in agreement with the Standard Model prediction.
Measured cross sections.
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.
Single differential forward jet cross section as a function of Bjorken X.
Triple differential cross section.
Triple differential cross section.
Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality 12 \le Q^2 \le 60 GeV^2 and of the Bjorken scaling variable 0.0002 \le x \le 0.005. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. Values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. This is the first measurement of F_2^{b\bar{b}} in this kinematic range. The results are found to be compatible with the predictions of perturbative quantum chromodynamics and withprevious measurements of F_2^{c\bar{c}}.
Measured NC reduced cross section for charm quarks.
Measuredstructure function F2 for charm quarks.
Measured NC reduced cross section for BOTTOM quarks.
We present the first measurement of the Q^2-dependence of the neutron spin structure function g_2^n at five kinematic points covering 0.57 (GeV/c)^2 <= Q^2 <= 1.34 (GeV/c)^2 at x~0.2. Though the naive quark-parton model predicts g_2=0, non-zero values for g_2 occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses or orbital angular momentum. When scattering from a non-interacting quark, $g_2^n$ can be predicted using next-to-leading order fits to world data for g_1^n. Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q^2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g_1^n are consistent with next-to-leading order fits to world data.
Measured values of G1N ang G2N.
First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.
Asymmetries as a function of X for LEADING hadrons.
Asymmetries as a function of Z for LEADING hadrons.
Asymmetries as a function of PT for LEADING hadrons.
A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data were collected with the H1 detector at the HERA collider in the years 1999-2000. Events are selected by requiring the presence of jets and muons in the final state. Both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify events containing beauty quarks. Differential cross sections are measured in photoproduction, with photon virtualities Q^2 < 1 GeV^2, and in deep inelastic scattering, where 2 < Q^2 < 100 GeV^2. The results are compared with perturbative QCD calculations to leading and next-to-leading order. The predictions are found to be somewhat lower than the data.
Muons and jets from beauty photoproduction, pseudorapidity.
Muons and jets from beauty photoproduction, muon transverse momentum.
Muons and jets from beauty photoproduction, leading jet transverse momentum
We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.
Measured values of A1 as a function of Q**2 at a mean X value of 0.0051.
Measured values of A1 as a function of Q**2 at a mean X value of 0.0079.
Measured values of A1 as a function of Q**2 at a mean X value of 0.0141.
Measurements are reported of the production of dijet events with a leading neutron in ep interactions at HERA. Differential cross sections for photoproduction and deep inelastic scattering are presented as a function of several kinematic variables. Leading order QCD simulation programs are compared with the measurements. Models in which the real or virtual photon interacts with a parton of an exchanged pion are able to describe the data. Next-to-leading order perturbative QCD calculations based on pion exchange are found to be in good agreement with the measured cross sections. The fraction of leading neutron dijet events with respect to all dijet events is also determined. The dijet events with a leading neutron have a lower fraction of resolved photon processes than do the inclusive dijet data.
Differential e p photoproduction cross section as a function of the jet transverse energy.
Differential e p photoproduction cross section as a function of JET pseudorapidity.
Differential e p photoproduction cross section as a function of JET X(C=GAMMA).
Measurements are presented of inclusive charm and beauty cross sections in e^+p collisions at HERA for values of photon virtuality Q^2 > 150 GeV^2 and of inelasticity 0.1 < y < 0.7. The charm and beauty fractions are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 vertex detector. The data are divided into four regions in Q^2 and Bjorken x, and values for the structure functions F_2^{c\bar{c}} and F_2^{b\bar{b}} are obtained. The results are found to be compatible with the predictions of perturbative quantum chromodynamics.
Charm fraction and cross section.
Bottom fraction and cross section.
The measured reduced neutral current charm cross sections and structure functions obtained using the NLO QCD fit correct for FL.
Inclusive production cross sections are measured in deep inelastic scattering at HERA for meson states composed of a charm quark and a light antiquark or the charge conjugate. The measurements cover the kinematic region of photon virtuality 2 < Q^2 < 100 GeV^2, inelasticity 0.05 < y < 0.7, D meson transverse momenta p_t(D) > 2.5 GeV and pseudorapidity |eta(D)| < 1.5. The identification of the D-meson decays and the reduction of the combinatorial background profit from the reconstruction of displaced secondary vertices by means of the H1 silicon vertex detector. The production of charmed mesons containing the light quarks u, d and s is found to be compatible with a description in which the hard scattering is followed by a factorisable and universal hadronisation process.
Inclusive D+- electroproduction cross section.
Inclusive D0 electroproduction cross section.
Inclusive D/S+- electroproduction cross section.