The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.
The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.
The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed.
Centrality dependences of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR). The asymmetry correlations are multiplied by the number of participants $N_{part}$. The upper (lower) shaded band shows half of the systematic uncertainty in the $\delta\langle A_{+}A_{-}\rangle$ ($\delta\langle A^{2}\rangle$); the larger of the UD\ and LR\ systematic uncertainties is drawn. The stars and triangles depict the $d$+Au results.
The correlation differences $\Delta\langle A^{2}\rangle=\delta\langle A^{2}_{ UD}\rangle-\delta\langle A^{2}_{ LR}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle=\delta\langle A_{+}A_{-}\rangle_{ UD}-\delta\langle A_{+}A_{-}\rangle_{ LR}$, scaled by the number of participants $N_{part}$, as a function of $N_{part}$. The error bars are statistical, and the systematic uncertainties are shown in the shaded bands (upper band for $\Delta\langle A_{+}A_{-}\rangle$ and lower band for $\Delta\langle A^{2}\rangle$). Also shown as the lines are the linear-extrapolated values of $\Delta\langle A^{2}\rangle$ and $\Delta\langle A_{+}A_{-}\rangle$ corresponding to a perfect event-plane resolution. The star and triangle depict the $d$+Au results.
The $p_{T}$ dependence of the charge asymmetry dynamical correlations, $\delta\langle A^{2}\rangle$, and the positive and negative charge asymmetry correlations, $\delta\langle A_{+}A_{-}\rangle$. The data are from 20-40% central Au+Au collisions. The asymmetries are calculated between hemispheres separated by the event plane (UD) and between those separated by the plane perpendicular to the event plane (LR).
We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at $\sqrt{s_{\text{NN}}} = 200 \text{GeV}$ in STAR are presented. The trigger jet population in Au+Au collisions is biased towards jets that have not interacted with the medium, allowing easier matching of jet energies between Au+Au and p+p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum ($p_{\text{T}}^{\text{assoc}}$) and enhanced at low $p_{\text{T}}^{\text{assoc}}$ in 0-20% central Au+Au collisions compared to p+p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands Au+Au(0.5-1 GeV).
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands p+p(0.5-1).
Jet-hadron correlations after background subtraction. Shown with Gaussian fits to jet peaks and systematic uncertanty bands Au+Au(4-6 GeV).
Previous experimental results based on data (15 million events) collected by the STAR detector at RHIC suggest event-by-event charge separation fluctuations perpendicular to the event plane in non-central heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high statistics 200 GeV Au+Au collisions data set (57 million events) collected by the STAR experiment. We explicitly count units of charge separation from which we find clear evidence for more charge separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same and opposite charge correlations, and find that the P-even background may largely be explained by momentum conservation and collective motion.
(Color online) $\Delta RMS^{\Delta Q}/\langle RMS^{\Delta Q}\rangle$ versus centrality for Au+Au collisions at $\sqrt{s_{NN}}$= 200 GeV. Not corrected for event plane resolution. Errors are statistical only.
(Color online) $\langle sin(\phi_{\alpha} − \Psi_{1})\rangle$ for positive and negative charges versus centrality for Au+Au collisions at $\sqrt{s_{NN}}$= 200 GeV. Shaded area represents the systematic uncertainty for both charge types obtained by comparing correlations from positive and negative pseudorapidity.
(Color online) Three-point correlator, Eq. 1, measured with $1^{st}$ and $2^{nd}$ harmonic event planes versus centrality for Au+Au collisions at $\sqrt{s_{NN}}$= 200 GeV. Shown with crosses are our previous results from the 2004 RHIC run (Y4) [9, 10]. The Y4 run used a second harmonic event plane. Y4 and Y7 $\Psi_{2}$ results are consistent within statistical errors. Shaded areas for the $2^{nd}$ harmonic points represent the systematic uncertainty of the event plane determination. Systematic uncertainties for the $1^{st}$ harmonic points are negligible compared to the statistical ones shown.
We present measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from sqrt(sNN)=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass m_T over the interval of 0.55<=m_T<=1.15 GeV/c^2. While the kaon radii are adequately described by the m_T-scaling in the outward and sideward directions, in the longitudinal direction the lowest m_T value exceeds the expectations from a pure hydrodynamical model prediction.
Independent correlation moments Rl(q) for orders l = 0,2,4 for midrapidity, low transverse momentum kaon pairs from the 20% most central Au+Au collisions at sqrt(sNN)=200 GeV
Kaon correlation function profiles for midrapidity, low transverse momentum kaon pairs from the 20% most central Au+Au collisions at sqrt(sNN)=200 GeV
Kaon source function profiles extracted from the data
The ALICE collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at $\sqrt{s} = 2.76$ TeV, with integrated luminosity of 13.6 nb$^{-1}$. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii $R = 0.2$ and $R = 0.4$ is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.
Inclusive differential jet cross section for R=0.2 and R=0.4.
Ratio of the inclusive differential jet cross section for R=0.2 and R=0.4.
We measure the ratio of cross sections, {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet), for associated production of a Z boson with at least one jet. The ratio is also measured as a function of the jet transverse momentum, jet pseudorapidity, Z boson transverse momentum, and the azimuthal angle between the Z boson and the closest jet for events with at least one b jet. These measurements use data collected by the D0 experiment in Run II of Fermilab's Tevatron ppbar Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of 9.7 fb$^{-1}$. The results are compared to predictions from next-to-leading order calculations and various Monte Carlo event generators.
The ratio of (BJET + Z0)/(JET + Z0) production as a function of the jet transverse momentum.
The ratio of (BJET + Z0)/(JET + Z0) production as a function of the Z0 transverse momentum.
The ratio of (BJET + Z0)/(JET + Z0) production as a function of the JET pseudorapidity.
We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.
The measured differential distribution in the two-photon mass;.
The measured differential distribution in the two-photon transverse momentum;.
The measured differential distribution in the azimuthal angular separation of the two photons;.
At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).
The measured differential elastic cross section.
The measured differential elastic cross section in the high |T| region. where it originally appeared as a plot, but was not tabulated.
The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.