The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.
Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.
No description provided.
A study of events containing at least four high transverse momentum jets and a search for double parton scattering (DPS) have been performed using data collected with the UA2 detector at the CERN p p Collider (√ s =630 GeV). The results are in good agreement with leading order QCD calculations. A value of σ DPS <0.82 nb at 95% confidence level (CL) is obtained for the DPS cross section.
Data requested from authors.
Uncorrected cross sections.
Upper limit to DPS contribution to 4JET production.
Direct observations of the semileptonic decay of Λ c + in the decay channels Λ c + → Λ e + X and Λ c + → Λμ + X have been made using the ARGUS detector at the DORIS II e + e − storage ring. The cross section times branching ratio were found to be σ (e + e − → Λ c + X)·BR( Λ c + → Λ e + X)=4.20±1.28±0.71 pb and σ (e + e − → Λ c + X)·BR( Λ c + → Λμ + X)=3.91±2.02±0.90 pb.
No description provided.
From 2540 Z 0 → τ + τ − events, we determine the inclusive decay branching fractions of the τ -lepton into one and three charged particles to be 0.856 ± 0.006 (stat.) ± 0.003 (syst.) and 0.144 ± 0.006 (stat.) ± 0.003 (syst.), respectively. The leptonic branching fractions are measured to be 0.175 ± 0.008 (stat.) ± 0.005 (syst.) for τ → μν μ ντ and 0.177 ± 0.007 (stat.) ± 0.006 (syst.) for τ → eν e ν τ . We determined the τ lifetime both from three-prong decays using the decay length and from one-prong decays using the impact parameter. The results from the two independent methods agree and yield a combined value of [0.309 ± 0.023 (stat.) ± 0.030 (syst.)] × 10 −12 s.
ALPHAS extracted from the ratio of the branching fractions.
Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.
QUARK means QUARK or QUARKBAR.
The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.
Statistical errors only.
No description provided.
No description provided.
The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.
Radiative effects are subtracted.
Radiative effects subtracted.
The analyzing power Ay for p+p elastic scattering at θlab=8.64°±0.07° (θcms=18.1°) and at a bombarding energy of 183.1±0.4 MeV has been determined to be Ay=0.2122±0.0017. The error includes statistics, systematic uncertainties, and the uncertainty in bombarding energy and angle. This measurement represents a calibration standard for polarized beams in this energy range. The absolute scale for the measurement has been obtained by comparison with p+C elastic scattering at the same energy at an angle where Ay is very nearly unity.
Axis error includes +- 0.0/0.0 contribution (?////).
We have measured the Z-boson production differential cross section as a function of transverse momentum using Z→ee and Z→μμ decays in p¯p collision at √s =1.8 TeV with the Collider Detector at Fermilab. Comparison with standard-model predictions shows good agreement over the range 0
Errors are systematic and statistical combined, and are correlated bin to bin due to the correction for resolution smearing.
We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain
Corrected for radiative effects and acceptance.
Unfolded charged particle multiplicity distribution for continuum events.
Unfolded charged particle multiplicity distribution for UPSILON(4S) events.