Showing 10 of 1139 results
Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,had}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ at particle level in the resolved topology in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 200.0 GeV < $m^{t\bar{t}}$ < 400.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 400.0 GeV < $m^{t\bar{t}}$ < 550.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 550.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ at particle level in the resolved topology in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 0.0 GeV < $p_{T}^{t,had}$ < 60.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 60.0 GeV < $p_{T}^{t,had}$ < 120.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 120.0 GeV < $p_{T}^{t,had}$ < 200.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 200.0 GeV < $p_{T}^{t,had}$ < 300.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $p_{T}^{t,had}$ in 300.0 GeV < $p_{T}^{t,had}$ < 1000.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|p_{out}^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|p_{out}^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Relative double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 3.5 < $N^{jets}$ < 4.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 4.5 < $N^{jets}$ < 5.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 5.5 < $N^{jets}$ < 6.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ at particle level in the resolved topology in 6.5 < $N^{jets}$ < 7.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 3.5 < $N^{jets}$ < 4.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 4.5 < $N^{jets}$ < 5.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 5.5 < $N^{jets}$ < 6.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 and the Absolute double-differential cross-section as function of $\Delta\phi(t,\bar{t})$ vs $N^{jets}$ in 6.5 < $N^{jets}$ < 7.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $H_{T}^{t\bar{t}}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t,had}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t,had}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $|y^{t\bar{t}}|$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $|y^{t\bar{t}}|$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Relative double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 4.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 5.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ = 6.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $\chi_{tt}$ vs $N^{jets}$ at particle level in the resolved topology in $N^{jets}$ $\geq$ 7.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 4.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 5.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ = 6.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 and the Absolute double-differential cross-section as function of $\chi_{tt}$ vs $N^{jets}$ in $N^{jets}$ $\geq$ 7.0 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.0 < $|y^{t,had}|$ < 0.7 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 0.7 < $|y^{t,had}|$ < 1.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the resolved topology in 1.4 < $|y^{t,had}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 0.7 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.7 < $|y^{t,had}|$ < 1.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.4 < $|y^{t,had}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.0 < $|y^{t\bar{t}}|$ < 0.4 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.4 < $|y^{t\bar{t}}|$ < 0.8 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 0.8 < $|y^{t\bar{t}}|$ < 1.2 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the resolved topology in 1.2 < $|y^{t\bar{t}}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.4 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.4 < $|y^{t\bar{t}}|$ < 0.8 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.8 < $|y^{t\bar{t}}|$ < 1.2 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.2 < $|y^{t\bar{t}}|$ < 2.5 at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the resolved topology in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 30.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 30.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 190.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 190.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,had}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,had}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|\Delta\phi(t,\bar{t})|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at particle level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the resolved topology.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi_{tt}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.0 < $|y^{t}|$ < 0.75 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 0.75 < $|y^{t}|$ < 1.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $|y^{t}|$ at parton level in the resolved topology in 1.5 < $|y^{t}|$ < 2.5 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.0 < $|y^{t}|$ < 0.75 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 0.75 < $|y^{t}|$ < 1.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $|y^{t}|$ in 1.5 < $|y^{t}|$ < 2.5 at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 180.0 GeV < $p_{T}^{t\bar{t}}$ < 330.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 330.0 GeV < $p_{T}^{t\bar{t}}$ < 800.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 80.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t}$ vs $p_{T}^{t\bar{t}}$ at parton level in the resolved topology in 80.0 GeV < $p_{T}^{t\bar{t}}$ < 180.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 1000.0 GeV < $m^{t\bar{t}}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 500.0 GeV < $m^{t\bar{t}}$ < 700.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t}$ vs $m^{t\bar{t}}$ in 700.0 GeV < $m^{t\bar{t}}$ < 1000.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.1 GeV < $|y^{t\bar{t}}|$ < 1.7 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 GeV < $|y^{t\bar{t}}|$ < 0.5 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.7 GeV < $|y^{t\bar{t}}|$ < 2.5 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.5 GeV < $|y^{t\bar{t}}|$ < 1.1 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $m^{t\bar{t}}$ in 325.0 GeV < $m^{t\bar{t}}$ < 500.0 GeV at parton level in the resolved topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y^{t}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $|y_{boost}^{t\bar{t}}|$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at parton level in the resolved topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi_{tt}$ and the absolute differential cross-section as function of $\chi_{tt}$ at parton level in the resolved topology.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of $y^{t\bar{t}}$ at parton level in the resolved topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,had}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t,had}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,1}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t,2}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|y^{t\bar{t}}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $\chi^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{extra jets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $N^{subjets}$ at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.0 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t\bar{t}}|$ in 1.0 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 0.0 < $|y^{t,had}|$ < 1.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ at particle level in the boosted topology in 1.0 < $|y^{t,had}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 0.0 < $|y^{t,had}|$ < 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $|y^{t,had}|$ in 1.0 < $|y^{t,had}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ at particle level in the boosted topology in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 490.0 GeV < $m^{t\bar{t}}$ < 1160.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $m^{t\bar{t}}$ in 1160.0 GeV < $m^{t\bar{t}}$ < 3000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ at particle level in the boosted topology in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 350.0 GeV < $H_{T}^{t\bar{t}}$ < 780.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $H_{T}^{t\bar{t}}$ in 780.0 GeV < $H_{T}^{t\bar{t}}$ < 2500.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ at particle level in the boosted topology in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 0.0 GeV < $p_{T}^{t\bar{t}}$ < 40.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 40.0 GeV < $p_{T}^{t\bar{t}}$ < 150.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t\bar{t}}$ in 150.0 GeV < $p_{T}^{t\bar{t}}$ < 1000.0 GeV at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.0 < $|y^{t\bar{t}}|$ < 0.65 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 0.65 < $|y^{t\bar{t}}|$ < 1.3 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ at particle level in the boosted topology in 1.3 < $|y^{t\bar{t}}|$ < 2.0 . Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.0 < $|y^{t\bar{t}}|$ < 0.65 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 0.65 < $|y^{t\bar{t}}|$ < 1.3 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $|y^{t\bar{t}}|$ in 1.3 < $|y^{t\bar{t}}|$ < 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Relative double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t,had}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 3.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 and the Absolute double-differential cross-section as function of $p_{T}^{t,had}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 3.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Relative double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.5. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 and the Absolute double-differential cross-section as function of $p_{T}^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.5 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 0.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ = 1.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $N^{extra jets}$ at particle level in the boosted topology in $N^{extra jets}$ $\geq$ 2.0. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 0.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ = 1.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $N^{extra jets}$ in $N^{extra jets}$ $\geq$ 2.0 at particle level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,had}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t,had}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,1}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t,2}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|y^{t\bar{t}}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $\chi^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{extra jets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,had}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t,had}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,1}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t,2}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|y^{t\bar{t}}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $\chi^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $|p_{out}^{t,lep}|$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $H_{T}^{t\bar{t}}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{extra jets}$ at particle level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $N^{subjets}$ and the absolute differential cross-section as function of $N^{subjets}$ at particle level in the boosted topology.
Relative differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $m^{t\bar{t}}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Relative differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute differential cross-section as a function of $p_{T}^{t}$ at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Total cross-section at parton level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Relative double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute double-differential cross-section as a function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ at parton level in the boosted topology in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 350.0 GeV < $p_{T}^{t}$ < 550.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Covariance matrix between the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV and the Absolute double-differential cross-section as function of $m^{t\bar{t}}$ vs $p_{T}^{t}$ in 550.0 GeV < $p_{T}^{t}$ < 2000.0 GeV at parton level in the boosted topology, accounting for the statistical and systematic uncertainties.
Statistical correlation matrix between the absolute differential cross-section as function of $m^{t\bar{t}}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $m^{t\bar{t}}$ at parton level in the boosted topology.
Statistical correlation matrix between the absolute differential cross-section as function of $p_{T}^{t}$ and the absolute differential cross-section as function of $p_{T}^{t}$ at parton level in the boosted topology.
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb^-1 of pp collision data at sqrt(s) = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from >=6 to >=9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m_0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV.
This letter reports the results of a search for top and bottom squarks from gluino pair production in 4.7 fb^-1 of pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC. The search is performed in events with large missing transverse momentum and at least three jets identified as originating from a b-quark. Exclusion limits are presented for a variety of gluino-mediated models with gluino masses up to 1 TeV excluded.
Inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb$^{-1}$. The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.
Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.
This paper describes precision measurements of the transverse momentum $p_\mathrm{T}^{\ell\ell}$ ($\ell=e,\mu$) and of the angular variable $\phi^{*}_{\eta}$ distributions of Drell-Yan lepton pairs in a mass range of 66-116 GeV. The analysis uses data from 36.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the LHC in 2015 and 2016. Measurements in electron-pair and muon-pair final states are performed in the same fiducial volumes, corrected for detector effects, and combined. Compared to previous measurements in proton-proton collisions at $\sqrt{s}=$7 and 8 TeV, these new measurements probe perturbative QCD at a higher centre-of-mass energy with a different composition of initial states. They reach a precision of 0.2% for the normalized spectra at low values of $p_\mathrm{T}^{\ell\ell}$. The data are compared with different QCD predictions, where it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties.
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
A search for Higgs boson pair production via vector-boson fusion (VBF) in the $b\bar{b}b\bar{b}$ final state is carried out with the ATLAS experiment using 126 fb$^{-1}$ of proton-proton collision data delivered at $\sqrt{s} = 13$ TeV by the Large Hadron Collider. This search is sensitive to VBF production of additional heavy bosons that may decay into Higgs boson pairs, and in a non-resonant topology it can constrain the quartic coupling between the Higgs bosons and vector bosons. No significant excess relative to the Standard Model expectation is observed, and limits on the production cross-section are set at the 95 % confidence level for a heavy scalar resonance in the context of an extended Higgs sector, and for non-resonant Higgs boson pair production. Interpretation in terms of the coupling between a Higgs boson pair and two vector bosons is also provided: coupling values normalised to the Standard Model expectation of $\kappa_{2V} < -0.43$ and $\kappa_{2V} > 2.56$ are excluded at the 95 % confidence level in data.
The dynamics of isolated-photon plus two-jet production in $pp$ collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma+jet+jet$. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as the next-to-leading-order QCD predictions from SHERPA are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.