The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $σ(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $σ(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $σ(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=σ(tq)/σ(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/Λ^2 < 0.06$ and $-0.87 < C_{ϕQ}^{3}/Λ^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $σ(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. The quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC}=2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Summary of statistical tests.
Results from hypothesis test for pairs of spin-parity models.
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.
A search for the rare decay D$^0$$\to$$\mu^+\mu^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0\pi^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$\mu^+\mu^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
Summary of branching fraction.
Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.
The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.
A search for charged-lepton flavour violation (CLFV) in top quark (t) production and decay is presented. The search uses proton-proton collision data corresponding to 138 fb$^{-1}$ collected with the CMS experiment at $\sqrt{s}$ = 13 TeV. The signal consists of the production of a single top quark via a CLFV interaction or top quark pair production followed by a CLFV decay. The analysis selects events containing a pair of oppositely charged muon and hadronically decaying $\tau$ lepton and at least three jets, where one has been identified to originate from the fragmentation of a bottom quark. Machine learning classification techniques are used to distinguish signal from standard model background events. The results of this search are consistent with the standard model expectations. The upper limits at 95% confidence level on the branching fraction $\mathcal{B}$ for CLFV top quark decays to a muon, a $\tau$ lepton, and an up or a charm quark are set at $\mathcal{B}$(t $\to \mu\tau$u) $\lt$ (0.040, 0.078, and 0.118) $\times$ 10$^{-6}$, and $\mathcal{B}$(t $\to\mu\tau$c) $\lt$ (0.810, 1.710, and 2.052) $\times$ 10$^{-6}$ for scalar, vector, and tensor-like operators, respectively.
The expected and observed upper limits on CLFV Wilson coefficients. The Limits on the Wilson coefficients are extracted from the upper limits on the cross sections.
The expected and observed upper limits on top quark CLFV branching fractions. The Limits on the top quark CLFV branching fractions are extracted from the upper limits on the Wilson coefficients.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the \ttbar system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8$^{+1.2}_{-1.4}$ pb.
Observed cross section of $\eta_t$
Observed values of twice the negative log-likelihood with respect to the best-fit point (2dNLL) as a function of the cross sections of $\eta_t$ and $\chi_t$.
A search for $t$-channel exchange of leptoquarks (LQs) is performed in dimuon and dielectron spectra using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. Eight scenarios are considered, in which scalar or vector LQs couple up or down quarks to muons or electrons, for dilepton invariant masses above 500 GeV. The LQ masses are probed up to 5 TeV, beyond a regime probed by previous pair-production and single-production searches. The differential distributions of dilepton events are fit to templates that model the nonresonant LQ exchange and various standard model background processes. Limits are set on LQ-fermion coupling strengths for scalar and vector LQ masses in the 1-5 TeV range at 95% confidence level, establishing stringent limits on first- and second-generation LQs.
Observed and Expected UL exclusions on the $BR(H\to SUEP)$ of hadronic signals with $m_{A'} = 0.7\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.15$ and $BR(A' \rightarrow \pi\pi) = 0.7$.
The observed data in the dielectron channel and the fitted signal-plus-background templates, shown for the $S_{e u}$ scenario with a candidate LQ mass of 2.5 TeV. Distributions of events are binned in the reconstructed dilepton mass, rapidity, and cosine theta.
Observed and Expected UL exclusions on the $BR(H\to S)$ of leptonic signals with $m_{A'} = 0.5\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.2$ and $BR(A' \rightarrow \pi\pi) = 0.6$.
The production cross-section of high-mass $\tau$-lepton pairs is measured as a function of the dilepton visible invariant mass, using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider. The measurement agrees with the predictions of the Standard Model. A fit to the invariant mass distribution is performed as a function of $b$-jet multiplicity, to constrain the non-resonant production of new particles described by an effective field theory or in models containing leptoquarks or $Z'$ bosons that couple preferentially to third-generation fermions. The constraints on new particles improve on previous results, and the constraints on effective operators include those affecting the anomalous magnetic moment of the $\tau$-lepton.
The measured unfolded differential cross sections.
The combined covariance matrix for the differential cross-section distribution.
Statistical covariance matrix for the differential cross-section distribution.
A first search is presented for vector-like leptons (VLLs) decaying into a light long-lived pseudoscalar boson and a standard model $\tau$ lepton. The pseudoscalar boson is assumed to have a mass of 2 GeV and to decay exclusively into a pair of photons. It is identified using the CMS muon system. The analysis is carried out using a data set of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Selected events contain at least one pseudoscalar boson decaying electromagnetically in the muon system and at least one hadronically decaying $\tau$ lepton. No significant excess of data events is observed compared to the background expectation. Upper limits are set at 95% confidence level on the vector-like lepton production cross section as a function of the VLL mass and the pseudoscalar boson mean proper decay length. The observed and expected exclusion ranges of the VLL mass extend up to 700 and 670 GeV, respectively, depending on the pseudoscalar boson lifetime.
Distributions of the number of hits in the cluster (Nhits) for the DT category in the signal region (SR). The last histogram bin contains all overflow events.
Distributions of the number of hits in the cluster (Nhits) for the CSC category in the signal region (SR). The last histogram bin contains all overflow events.
Distributions of the number of hits in the cluster (Nhits) for the DT category in the out-of-time (OOT) region. The last histogram bin contains all overflow events.
A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.
Distribution of $m_{3\ell}$ in SROS-on-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $m_{3\ell}$ in SROS-on-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.