Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 109-122, 1998.
Inspire Record 450085 DOI 10.17182/hepdata.44384

Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.

28 data tables

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 6 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 11 GeV and a requirement on X(NAME=GAMMA_OBS) to be 0.0 TO 1.0. The second DSYS errors are the correlated uncertainties.

More…

Measurement of the diffractive structure function F2(D(4) ) at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 81-96, 1998.
Inspire Record 448663 DOI 10.17182/hepdata.44431

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.

4 data tables

The measured distribution of T, the squared momentum transfer to the virtual pluton.

Slope of the T distribution.

The structure function F2(NAME=D4).

More…

Observation of scaling violations in scaled momentum distributions at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 414 (1997) 428-443, 1997.
Inspire Record 449531 DOI 10.17182/hepdata.44514

Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of $x$ and $Q^2$ using the ZEUS detector. The evolution of the scaled momentum, $x_p$, with $Q^2,$ in the range 10 to 1280 $GeV^2$, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of $Q^2$.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Rapidity Gaps between Jets in Photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 369 (1996) 55-68, 1996.
Inspire Record 401492 DOI 10.17182/hepdata.44803

Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

2 data tables

No description provided.

No description provided.


Measurement of elastic rho0 photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 69 (1995) 39-54, 1995.
Inspire Record 397423 DOI 10.17182/hepdata.44973

Elastic $\rho~0$ photoproduction has been measured using the ZEUS detector at HERA. Untagged photoproduction events from $ep$ interactions were used to measure the reaction $\gamma p \rightarrow \rho~0 p$ ($\rho~0 \rightarrow \pi~+ \pi~-$) at photon-proton centre-of-mass energies between 60 and 80GeV and $|t|&lt;0.5$GeV$~2$, where $t$ is the square of the four-momentum transferred at the proton vertex. The differential cross section $d\sigma/dM_{\pi\pi}$, where $M_{\pi\pi}$ is the invariant mass of the two pions, and the integrated cross section, $\sigma_{\gamma p\rightarrow \rho~0 p}$, are presented; the latter was measured to be $14.7\pm 0.4(\mbox{stat.})\pm2.4(\mbox{syst.})\mu\mbox{b}$. The differential cross section $d\sigma/dt$ has an approximately exponential shape; a fit of the type $A~{\prime}_{t} \exp{(-b~{\prime}_{t}|t| + c~{\prime}_{t} t~2)}$ yields a $t$-slope $b~{\prime}_{t}= 9.9\pm1.2(\mbox{stat.})\pm 1.4(\mbox{syst.})\mu\mbox{b}$. The results, when compared to low energy data, show a weak energy dependence of both $\sigma_{\gamma p\rightarrow \rho~0 p}$ and of the $t$-slope. The $\rho~0$ is produced predominantly with transverse polarisation, demonstrating that $s$-channel helicity conservation holds at these energies.

5 data tables

Integrated cross section for exclusive rho0 <pi+ pi-> production where 2Mpi < Mpi pi < Mrho + 5width0.

No description provided.

Applying the Spital and Yennie method to each t bin. No errors given.

More…

Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 356 (1995) 129-146, 1995.
Inspire Record 396314 DOI 10.17182/hepdata.44974

Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction $ep \rightarrow jet \; + \; X$ with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies $E_T~{jet}>8$GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the events are due to the exchange of a pomeron with partonic structure, the quark and gluon content of the pomeron is probed at a scale $\sim (E_T~{jet})~2$. A comparison of the measurements with model predictions based on QCD plus Regge phenomenology requires a contribution of partons with a hard momentum density in the pomeron. A combined analysis of the jet cross sections and recent ZEUS measurements of the diffractive structure function in deep inelastic scattering gives the first experimental evidence for the gluon content of the pomeron in diffractive hard scattering processes. The data indicate that between 30\% and 80\% of the momentum of the pomeron carried by partons is due to hard gluons.

2 data tables

No description provided.

No description provided.


Measurement of charged and neutral current e- p deep inelastic scattering cross-sections at high Q**2

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Rev.Lett. 75 (1995) 1006-1011, 1995.
Inspire Record 393918 DOI 10.17182/hepdata.45004

Deep inelastic $e~-p$ scattering has been studied in both the charged-current (CC) and neutral-current (NC) reactions at momentum transfers squared, $Q~2$, between 400 GeV$~2$ and the kinematic limit of 87500 GeV$~2$ using the ZEUS detector at the HERA $ep$ collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, $ d\sigma/dQ~2 $, are presented. For $Q~2 \simeq M_W~2$, where $M_W$ is the mass of the $W$ boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high $Q~2$. The $Q~2$ dependence of the CC cross section determines the mass term in the CC propagator to be $M_{W} = 76 \pm 16 \pm 13$GeV.

4 data tables

Data requested from authors.

Neutral current cross sections.

Charged current cross sections.

More…

Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 348 (1995) 665-680, 1995.
Inspire Record 392980 DOI 10.17182/hepdata.44999

Dijet production by almost real photons has been studied at HERA with the ZEUS detector. Jets have been identified using the cone algorithm. A cut on xg, the fraction of the photon energy participating in the production of the two jets of highest transverse energy, is used to define cross sections sensitive to the parton distributions in the proton and in the photon. The dependence of the dijet cross sections on pseudorapidity has been measured for xg $\ge 0.75$ and xg $< 0.75$. The former is sensitive to the gluon momentum density in the proton. The latter is sensitive to the gluon in the photon. The cross sections are corrected for detector acceptance and compared to leading order QCD calculations.

2 data tables

Direct photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.

Resolved photon di-jet cross section.. Data are for two (or more) jets.. Second systematic error is due to energy scale uncertainty.


Inclusive jet differential cross-sections in photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 342 (1995) 417-432, 1995.
Inspire Record 378838 DOI 10.17182/hepdata.45054

Inclusive jet differential cross sections for the reaction ep → jet + X at Q 2 below 4 GeV 2 have been measured with the ZEUS detector at HERA using an integrated luminosity of 0.55 pb −1 . These cross sections are given in the kinematic region 0.2 < y < 0.85, for jet pseudorapidities in the ep -laboratory range −1 < η jet < 2 and refer to jets at the hadron level with a cone radius of one unit in the η - θ plane. These results correspond to quasi-real photoproduction at centre-of-mass energies in the range 130–270 GeV and, approximately, for jet pseudorapidities in the interval −3 < η jet ( λp CMS) < 0. These measurements cover a new kinematic regime of the partonic structure of the photon, at typical scales up to ∼300 GeV 2 and photon fractional momenta down to x γ ∼ 10 −2 . Leading logarithm parton shower Monte Carlo calculations, which include both resolved and direct processes and use the predictions of currently available parametrisations of the photon parton distributions, describe in general the shape and magnitude of the measured η jet and E t jet distributions.

5 data tables

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

Second systematic error is uncertainty in the ET scale.

More…