Preliminary results are presented using the Wide Band photon beam at Fermilab to measure the cross-section of $D^{*\pm}$ and $D^{\pm}$ photoproduction on a Be target over the photon energy range from 100 GeV to 350 GeV....
INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+.
INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+, D0 --> K- 2PI+ PI-.
INCLUDES THE DECAYS: D+ --> K- 2PI+.
We have studied the hadronic production of charmed mesons in the NA 32 experiment at CERN. A special trigger together with a high resolution vertex detector consisting of charge coupled devices and silicon microstrip detectors allowed the selection of very clean samples of charmed mesons. We have collected 852 fully reconstructed decays: 60Ds+→K+K−π+, 543D°→K−π+ andK−π+π−π+ as well as 249D+→K−π+π+ (or charge conjugate). 147 mesons out of our\({{D^0 } \mathord{\left/ {\vphantom {{D^0 } {\bar D^0 }}} \right. \kern-\nulldelimiterspace} {\bar D^0 }}\) sample were produced via chargedD* state. For all charmed mesons we determine the total production cross-section and study thexF andpt2 distributions.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
We report measurements of b-quark and B-hadron production in pp̄ collisions at √ s =630 GeV. We use muon samples to extract beauty production cross-sections over a wide range of transverse momentum in the central rapidity range | y | < 1.5. We compare our results to an O(α s 3 ) QCD prediction and find good agreement over the measured b-quark transverse momentum range 6 GeV / c to 54 GeV / c . Using the shape of the p T and y distribution predicted by QCD to extrapolate our data, we infer a total cross-section for b-quark production at √s=630 GeV of σ( p p ̄ → b b ̄ + X )=19.3±7( exp. )±9( th. μ b .
No description provided.
The cross section is multipled on the B(J/PSI --> MU+ MU-).
No description provided.
An analysis of W and Z boson production at UA1, using 4.66 pb −1 of data from the 1988 and 1989 CERN p p Collider runs at s =0.63 TeV , yields R ≡ σ W Br(W→ μ v)/ σ z Br( Z → μμ )=10.4 −1.5 +1.8 stat.±0.8(syst.) We find R =9.5 −1.0 +1.1 (stat.+syst.) when combining all available UA1 data, in both the electron and muon channel, taken in the period 1983–1989. In the framework of the standard model, the value of R is used to infer the total width of the W boson, Γ W tot =2.18 −0.24 +0.26 (exp.)±0.04(theory) GeV/ c 2 .
No description provided.
We have measured the cross-section of the reaction e + e − → γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + > 103 GeV and Λ − 118 GeV are found. For the decays Z 0 → γ ,Z 0 → π 0 γ , Z 0 → γγγ we find upper limits of 2.9 × 10 −4 ,2.9×10 −4 ,4.1×10 −4 and 1.2×10 −4 , respectively. All limits are at 95% CL.
No description provided.
We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .
Cross section from 1990 data.
Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).
Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).
A determination of the partial width Γ c c ̄ of the Z 0 boson into charm quark pairs is presented, based on a total sample of 36 900 Z 0 hadronic decays measured with the DELPHI detector at the LEP collider. The production rate of cc̄ events is derived from the inclusive analysis of charged pions coming from the decay of charmed meson D ∗+ → D 0 π + and D ∗− → D ̄ 0 π − where the π ± is constrained by kinematics to have a low p T with respect to the axis. The probability to produce these π ± from D ∗± decay in cc̄ events is taken to be 0.31 ±_0.05 as measured at √ s =10.55 GeV. The measured relative partial width Γ c c ̄ Γ h = 0.162± 0.030 ( stat. ) ±0.050 ( syst. ) is in good agreement with the standard moel value of 0.171. Together with our previous measurement of the total hadronic width Γ h this implies Γ c c ̄ = 282±53 ( stat. )±88( syst. ) MeV .
No description provided.
Overall systematic error is 2.3 pct.
Overall systematic error is 2.6 pct.
Overall systematic error is 2.8 pct.
The yield of J/ψ and ψ’ vector-meson states has been measured for 800-GeV protons incident on deuterium, carbon, calcium, iron, and tungsten targets. A depletion of the yield per nucleon from heavy nuclei is observed for both J/ψ and ψ’ production. This depletion exhibits a strong dependence on xF and pt. Within experimental errors the depletion is the same for the J/ψ and the ψ’.
Ratio of heavy nucleus to deuterium yields. A is the mass number of the target nucleus.
Ratio of heavy nucleus to deuterium yeilds. A is the mass number of the target nucleus.
Ratio of heavy nucleus to deuterium yeilds. A is the mass number of the target nucleus.