Elastic Scattering and Single Meson Production in Proton-Proton Collisions at 2.85 Bev

Smith, G.A. ; Courant, H. ; Fowler, E.C. ; et al.
Phys.Rev. 123 (1961) 2160-2167, 1961.
Inspire Record 47571 DOI 10.17182/hepdata.734

The Brookhaven National Laboratory twenty-inch liquid hydrogen bubble chamber was exposed to a monoenergetic beam of 2.85-Bev protons, elastically scattered from a carbon target in the internal beam of the Cosmotron. All two-prong events, excluding strange particle events, have been studied by the Yale High-Energy Group. The remaining interactions have been studied by the Brookhaven Bubble Chamber Group. Elastic scattering was found to be mostly pure diffraction scattering at center-of-mass angles up to about thirty-five degrees. Some phase shift and/or tapering of the proton edge was required to fit the data at larger angles. No polarization effects in the proton-carbon scattering were observed using hydrogen as an analyzer of polarized protons. Nucleonic isobar formation in the T=32, J=32 state was found to account for a large part of single pion production. High-orbital angular-momentum states were found to be greatly favored in single pion production. The isobar model of Lindenbaum and Sternheimer gave good agreement with the observed nucleon and pion energy spectra. No polarization or alignment effects were observed for the isobar assumed in this model.

3 data tables

No description provided.

No description provided.


Nucleon and Nuclear Cross Sections for Positive Pions and Protons above 1.4 Bev/c

Longo, Michael J. ; Moyer, Burton J. ;
Phys.Rev. 125 (1962) 701-713, 1962.
Inspire Record 46829 DOI 10.17182/hepdata.26791

Total (π+, p) and (p, p) cross sections in the momentum range 1.4 to 4.0 Bev/c are presented. These measurements, with an accuracy of approximately 2%, were made at the Berkeley Bevatron by using counter techniques. Pions were distinguished from protons by means of a gas-filled Čerenkov counter. The (π+, p) total cross section was found to be almost constant above 2.0 Bev/c at a value near 29 mb. The (p, p) cross section decreases gradually from 47.5 mb to 41.7 mb over the momentum range covered. Transmission measurements of π+-nucleus and p-nucleus cross sections in both good and poor geometry were made at 3.0 Bev/c. The results are compared with the predictions of the optical model. In contrast to most previous work at high energies, an essentially exact solution of the wave equation for a potential well with a diffuse edge was used. The values of the imaginary part of the optical potential that best fit the experimental data are in good agreement with the predicted values. No strong conclusion regarding the real part of the potential was possible. Absorption and total elastic scattering cross sections for Be, C, Al, and Cu are presented. The total elastic scattering cross sections from this experiment disagree with Wikner's for π−-nucleus scattering.

1 data table

No description provided.


Proton-Proton Elastic Scattering Involving Large Momentum Transfers

Cocconi, G. ; Cocconi, V.T. ; Krisch, A.D. ; et al.
Phys.Rev. 138 (1965) B165-B172, 1965.
Inspire Record 49634 DOI 10.17182/hepdata.26688

Twenty-nine proton-proton differential elastic cross sections for lab momenta p0 from 11 to 31.8 BeV/c, at four-momentum transfers squared, −t, from 2.3 to 24.4 (BeV/c)2, have been measured at the Brookhaven alternating gradient synchrotron. The circulating proton beam impinged upon a thin CH2 internal target. Both scattered protons from p−p elastic events were detected by scintillation-counter telescopes which were placed downstream from deflection magnets set at the appropriate angles to the incident beam. The angular correlation of the protons, their momenta, and the coplanarity of the events were determined by the detection system. The results show that at high momentum transfers the differential cross section, dσdt, depends strongly upon the energy; for −t=10 (BeV/c)2, the value of dσdt at p0=30 BeV/c is smaller by a factor∼1000 than at p0=10 BeV/c. At all energies, dσdt falls rapidly with increasing |t| for scattering angles up to about 65° (c.m.), while in the range from 65 to 90° the cross section falls only by a factor of about 2. The smallest cross section measured was 9×10−37 cm2 sr−1 (c.m.), at p0=31.8 BeV/c and −t=20.4 (BeV/c)2; this is about 3×10−12 of the zero-degree cross section at the same energy.

1 data table

'1'. '2'.


Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables
More…

Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

22 data tables

'1'. '2'.

'1'. '2'.

No description provided.

More…

Polarization parameter in elastic proton proton scattering from 0.75-GeV to 2.84-GeV

Neal, Homer A. ; Longo, Michael J. ;
Phys.Rev. 161 (1967) 1374-1383, 1967.
Inspire Record 51386 DOI 10.17182/hepdata.6264

The polarization parameter in elastic proton-proton scattering has been measured at 0.75, 1.03, 1.32, 1.63, 2.24, and 2.84 GeV by employing a double-scattering technique. An external proton beam from the Brookhaven Cosmotron was focused on a 3 in.-long liquid-hydrogen target and the elastic recoil and scattered protons were detected in coincidence by scintillation counters. The polarization of the recoil beam was determined from the azimuthal asymmetry exhibited in its scattering from a carbon target. This asymmetry was measured by a pair of scintillation-counter telescopes which symmetrically viewed the carbon target. The analyzing power of this system was previously determined in an independent calibration experiment employing a 40%-polarized proton beam at the Carnegie Institute of Technology synchrocyclotron. False asymmetries were cancelled to a high order by periodically rotating the analyzer 180° about the recoil beam line. Spark chambers were utilized to obtain the spatial distribution of the beam as it entered the analyzer; this information allowed an accurate determination of the corrections necessary to compensate for any misalignment of the axis of the analyzer relative to the incident-beam centroid. Values of the polarization parameter as a function of the center-of-mass scattering angle are given for each incident beam energy. The predictions of the Regge theory for polarization in elastic proton-proton scattering and recently published phase-shift solutions are compared with the experimental results. Surprisingly good agreement with the Regge predictions is found despite the low energies involved.

4 data tables

'ALL'.

No description provided.

No description provided.

More…

AN INVESTIGATION OF THE 1.4-GeV/c**2 NUCLEON ISOBAR IN PROTON PROTON INTERACTIONS

Tan, T.H. ; Perl, Martin L. ; Martin, F. ; et al.
Phys.Lett.B 28 (1968) 195-198, 1968.
Inspire Record 52678 DOI 10.17182/hepdata.29198

The production of N ∗ (1400) isobar in the reaction pp → pN ∗+ (1400), where N ∗ (1400) → n π + and p π 0 , is investigated with the aid of one-pion exchange model. The one-pion exchange mechanism does not seem to dominate the production process. The isospin of N ∗ (1400) is found to be I = 1 2 , and the elasticity of the resonance is estimated to be 0.66.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////Due to fitting mass spectrum).


Strange-particle production in {8-BeV/c} proton-proton interactions

Firebaugh, M. ; Ascoli, G. ; Goldwasser, E.L. ; et al.
Phys.Rev. 172 (1968) 1354-1369, 1968.
Inspire Record 53978 DOI 10.17182/hepdata.26501

A systematic survey of strange-particle final states produced by 8−BeVc protons was made in the BNL 80-in. hydrogen bubble chamber. Cross sections were measured for some 33 reactions. The ratio of the cross section for the KK¯ channels to the total strange-particle cross section was measured to be 0.12 and appears to be rising in this momentum region. The total cross section for strange-particle production is estimated as 1.8±0.2 mb. Comparison is made of the data with the predictions of the one-pion-exchange model, and at least partial agreement occurs for the K+pΛ and πKNΣ final states. The KpΣ states appear to contain N*(1924)→KΣ, and the πKNΛ states all include Y*(1385) production with the π+K0pΛ state also containing N*(1236) and K*(890) production. An examination of the five- and six-body K, Λ states indicates strong Y*(1385) and N*(1236) production. Finally, all final states containing a K and a Λ show a dependence on M(K,Λ) which is well parametrized by a Breit-Wigner shape with M0=1777 MeV and Γ=345 MeV. This behavior is interpreted as being consistent with one-pion exchange as the dominant mechanism for these reactions.

1 data table

'1'. '2'.


Polarization in pp Elastic Scattering at Large Momentum Transfers

Booth, N.E. ; Conforto, G. ; Esterling, R.J. ; et al.
Phys.Rev.Lett. 21 (1968) 651-652, 1968.
Inspire Record 944913 DOI 10.17182/hepdata.21669

Measurements of the polarization in pp elastic scattering have been made at 5.15 GeV/c over the range −t=0.2 to 1.8 (GeV/c)2. The data are compared with a Regge-pole model, and with the diffraction model of Durand and Lipes in which the absorptive part of the pp interaction is derived from the electromagnetic form factor of the proton. The latter model reproduces the t dependence of the experimental data in a qualitative way.

1 data table

Elastic scattering and single-pion production in proton proton interactions at 6.92 bev/c

Alexander, G. ; Carmel, Z. ; Eisenberg, Y. ; et al.
Phys.Rev. 173 (1968) 1322-1329, 1968.
Inspire Record 55956 DOI 10.17182/hepdata.5540

Elastic scattering and single-pion production in pp collisions at 6.92 BeVc were studied in the BNL 80-in. hydrogen bubble chamber. Partial cross sections for the different final states are given. The reaction pp→nN1238*(pπ+) with σ=1.9±0.3 mb is analyzed and is in agreement with the modified one-pion-exchange model. Single-pion production can be explained as due mainly to two channels: (a) pp→N1238*(pπ+)n, and (b) pp→p(nπ+) or pp→p(pπ0), where the (nπ+) and (pπ0) pairs are in an I=12 state.

4 data tables

No description provided.

No description provided.

No description provided.

More…