The first measurement of $_{\Lambda}^{3}\mathrm{H}$ and $^3_ {\overline{\Lambda}}\overline{\mathrm{H}}$ differential production with respect to transverse momentum and centrality in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$~TeV is presented. The $_{\Lambda}^{3}\mathrm{H}$ has been reconstructed via its two-charged-body decay channel, i.e., $_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}$. A Blast-Wave model fit of the $p_{\rm T}$-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the $_{\Lambda}^{3}\mathrm{H}$ kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of $_{\Lambda}^{3}\mathrm{H}$ and $^3\mathrm{He}$ is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements.
Transverse momentum distributions of (anti)hypertriton in 0-10% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 10-30% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 30-50% V0M centrality class
The first measurement of the e$^+$e$^-$ pair production at midrapidity and low invariant mass in central Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV at the LHC is presented. The yield of e$^+$e$^-$ pairs is compared with a cocktail of expected hadronic decay contributions in the invariant mass ($m_{\rm ee}$) and pair transverse momentum ($p_{\rm T,ee}$) ranges $m_{\rm ee} < 3.5$ GeV$/c^2$ and $p_{\rm T,ee} < 8$ GeV$/c$. For $0.18 < m_{\rm ee} < 0.5$ GeV$/c^2$ the ratio of data to the cocktail of hadronic contributions without $\rho$ mesons amounts to $1.42 \pm 0.12 \ ({\rm stat.}) \pm 0.17 \ ({\rm syst.}) \pm 0.12 \ ({\rm cocktail})$ and $1.44 \pm 0.12 \ ({\rm stat.}) \pm 0.17 \ ({\rm syst.}) ^{+0.17}_{-0.21} \ ({\rm cocktail})$, including or not including medium effects in the estimation of the heavy-flavor background, respectively. It is consistent with predictions from two different models for an additional contribution of thermal e$^+$e$^-$ pairs from the hadronic and partonic phases. In the intermediate-mass range ($1.2 < m_{\rm ee} < 2.6$ GeV$/c^2$), the pair transverse impact parameter of the e$^+$e$^-$ pairs (DCA$_{\rm ee}$) is used for the first time in Pb$-$Pb collisions to separate displaced dielectrons from heavy-flavor hadron decays from a possible (thermal) contribution produced at the interaction point. The data are consistent with a suppression of e$^+$e$^-$ pairs from ${\rm c\overline{c}}$ and an additional prompt component. Finally, the first direct-photon measurement in the 10% most central Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported via the study of virtual direct photons in the transverse momentum range $1 < p_{\rm T} < 5$ GeV$/c$. A model including prompt photons, as well as photons from the pre-equilibrium and fluid-dynamic phases, can reproduce the result, while being at the upper edge of the data uncertainties.
Dielectron invariant mass spectrum in Pb--Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for the 0--10\% centrality class. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $0.2 < p_{\rm T,e} < 10$ GeV/$c$. Dielectrons are measured in $0 < p_{\rm T,ee} < 8$ GeV/$c$.
Dielectron invariant mass spectrum of excess in Pb--Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for the 0--10\% centrality class. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $0.2 < p_{\rm T,e} < 10$ GeV/$c$. Dielectrons are measured in $0 < p_{\rm T,ee} < 8$ GeV/$c$. Upper limits at 90\% C.L. are also set. The Ncoll-scaled HF cocktail is subtracted from the inclusive dielectron yield.
Dielectron invariant mass spectrum of excess in Pb--Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for the 0--10\% centrality class. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $0.2 < p_{\rm T,e} < 10$ GeV/$c$. Dielectrons are measured in $0 < p_{\rm T,ee} < 8$ GeV/$c$. Upper limits at 90\% C.L. are also set. The Ncoll-scaled HF cocktail is subtracted from the inclusive dielectron yield.
The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of ${\rm ^{3}_{\Lambda}\rm H}$ in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval $-1 < y < 0$ for the 40% highest multiplicity p-Pb collisions is ${\rm d} N /{\rm d} y =[\mathrm{6.3 \pm 1.8 (stat.) \pm 1.2 (syst.) ] \times 10^{-7}}$. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in charged particle multiplicity environments relevant to small collision systems such as p-Pb and therefore the measurement of ${\rm d} N /{\rm d} y$ is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6.9$\sigma$ of some configurations of the statistical hadronization model, thus constraining the theory behind the production of loosely bound states at hadron colliders.
Integrated yield of hypertriton produced in 0-40% p-Pb collisions
Hypertriton over $\Lambda$ ratio in 0-40% p-Pb collisions
$S_3$ in the 40% largest multiplicity p-Pb collisions