The polarization of inclusive J/$\psi$ and $\Upsilon(1{\rm S})$ produced in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=5.02$ TeV at the LHC is measured with the ALICE detector. The study is carried out by reconstructing the quarkonium through its decay to muon pairs in the rapidity region $2.5<y<4$ and measuring the polar and azimuthal angular distributions of the muons. The polarization parameters $\lambda_{\theta}$, $\lambda_{\phi}$ and $\lambda_{\theta\phi}$ are measured in the helicity and Collins-Soper reference frames, in the transverse momentum interval $2<p_{\rm T}<10$ GeV/$c$ and $p_{\rm T}<15$ GeV/$c$ for the J/$\psi$ and $\Upsilon(1{\rm S})$, respectively. The polarization parameters for the J/$\psi$ are found to be compatible with zero, within a maximum of about two standard deviations at low $p_{\rm T}$, for both reference frames and over the whole $p_{\rm T}$ range. The values are compared with the corresponding results obtained for pp collisions at $\sqrt{s}=7$ and 8 TeV in a similar kinematic region by the ALICE and LHCb experiments. Although with much larger uncertainties, the polarization parameters for $\Upsilon(1{\rm S})$ production in Pb-Pb collisions are also consistent with zero.
J/$\psi$ polarization parameters, measured for Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the helicity and Collins-Soper reference frames in the rapidity interval $2.5<y<4$.The first uncertainty is statistical and the second systematic.
J/$\psi$ polarization parameters, measured for Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the helicity and Collins-Soper reference frames in the rapidity interval $2.5<y<4$.The first uncertainty is statistical and the second systematic.
J/$\psi$ polarization parameters, measured for Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the helicity and Collins-Soper reference frames in the rapidity interval $2.5<y<4$.The first uncertainty is statistical and the second systematic.
The elliptic and triangular flow coefficients $v_2$ and $v_3$ of prompt D$^{0}$, D$^{+}$, and D$^{*+}$ mesons were measured at midrapidity ($|y|<0.8$) in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval $1< p_{\rm T}<36$ GeV/$c$ in central (0-10%) and semi-central (30-50%) collisions. Compared to pions, protons, and J/$\psi$ mesons, the average D-meson $v_{n}$ harmonics are compatible within uncertainties with a mass hierarchy for $p_{\rm T} \lesssim 3$ GeV/$c$, and are similar to those of charged pions for higher $p_{\rm T}$. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson $v_2$ and $p_{\rm T}$-differential yields. The D-meson $v_2$ is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event D-meson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium.
Average $v_2${SP} vs. $p_\mathrm{T}$ of prompt D$^0$, D$^+$, and D$^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in the centrality class 0-10% in the rapidity interval $|y|<0.8$. The first (sys,data) error is the systematic uncertainty from all the other sources except for the B feed-down. The second (sys,FD) error is the systematic uncertainty from the B feed-down contribution.
Average $v_2${SP} vs. $p_\mathrm{T}$ of prompt D$^0$, D$^+$, and D$^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in the centrality class 30-50% in the rapidity interval $|y|<0.8$. The first (sys,data) error is the systematic uncertainty from all the other sources except for the B feed-down. The second (sys,FD) error is the systematic uncertainty from the B feed-down contribution.
Average $v_3${SP} vs. $p_\mathrm{T}$ of prompt D$^0$, D$^+$, and D$^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV in the centrality class 0-10% in the rapidity interval $|y|<0.8$. The first (sys,data) error is the systematic uncertainty from all the other sources except for the B feed-down. The second (sys,FD) error is the systematic uncertainty from the B feed-down contribution.
In this Letter, we report the first measurement of the inelastic cross section for antideuteron-nucleus interactions at low particle momenta, covering a range of $0.3 \leq p < 4$ GeV/$c$. The measurement is carried out using p-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, recorded with the ALICE detector at the CERN LHC and utilizing the detector material as an absorber for antideuterons and antiprotons. The extracted raw primary antiparticle-to-particle ratios are compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of antiparticles through the detector material. The analysis of the raw primary (anti)proton spectra serves as a benchmark for this study, since their hadronic interaction cross sections are well constrained experimentally. The first measurement of the inelastic cross section for antideuteron-nucleus interactions averaged over the ALICE detector material with atomic mass numbers $\langle A \rangle$ = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parameterization used in GEANT4 in the lowest momentum interval of $0.3 \leq p < 0.47$ GeV/$c$ up to a factor 2.1. This result is relevant for the understanding of antimatter propagation and the contributions to antinuclei production from cosmic ray interactions within the interstellar medium. In addition, the momentum range covered by this measurement is of particular importance to evaluate signal predictions for indirect dark-matter searches.
Raw primary antiproton-to-proton ratio as a function of the momentum p_primary.
Raw primary antiproton-to-proton ratio from Geant4-based MC simulations as a function of the momentum p_primary.
Raw primary antideuteron-to-deuteron ratio as a function of the momentum p_primary.
The elliptic flow of electrons from beauty hadron decays at midrapidity ($|y|$$<$ 0.8) is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parameterized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, $v_{\rm 2}$. The $v_{\rm 2}$ coefficient of electrons from beauty-hadron decays is measured for the first time in the transverse momentum ($p_{\rm{T}}$) range 1.3-6 GeV/$c$ in the centrality class 30-50%. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length $c\tau \approx$ 500 $\mu$m compared to that of charm hadrons and most of the other background sources. The $v_{\rm 2}$ of electrons from beauty hadron decays at midrapidity is found to be positive with a significance of 3.75$\sigma$. The results provide insights on the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavoured by the measurement at high $p_{\rm{T}}$, but is in agreement with the results at low $p_{\rm{T}}$. Transport models including substantial interactions of beauty quarks with an expanding strongly-interacting medium describe the measurement.
$v_{2}$ of electrons from beauty hadron decays as a function of $p_{\rm T}$ in the centrality range 30-50% for $\sqrt{s_{\rm NN}}=5.02 {\rm~TeV}$
Measurements of the inclusive J/$\psi$ yield as a function of charged-particle pseudorapidity density ${\rm d}N_{\rm ch}/\rm{d}\eta$ in pp collisions at $\sqrt{s}$ = 13 TeV with ALICE at the LHC are reported. The J/$\psi$ meson yield is measured at midrapidity ($|y|<0.9$) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity ($|\eta|<1$) and at forward rapidity ($-3.7<\eta<-1.7$ and $2.8<\eta<5.1$); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/$\psi$ yield with normalized ${\rm d}N_{\rm ch}/\rm{d}\eta$ is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively.
$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ integrated, event selection SPD
$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ integrated, event selection V0
$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ 0-4 and 4-8 GeV/c, event selection SPD
Measurement of Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity $-4 < \eta_{\mu} < -2.5$ and transverse momentum $p_{\rm T}^{\mu} > 20$ GeV/$c$ in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass $60 < m^{\mu\mu} < 120$ GeV$c^2$ and rapidity $2.5 < y_{cms}^{\mu\mu} < 4$. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ($-4.46< y_{cms}^{\mu\mu}<-2.96$) and forward ($2.03< y_{cms}^{\mu\mu}<3.53$) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a $3.4\sigma$ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.
Differential fiducial cross section in p-Pb
Integrated fiducial invariant yield in Pb-Pb
Rapidity differential fiducial invariant yield in Pb-Pb
A search is conducted for a low-mass charged Higgs boson produced in a top quark decay and subsequently decaying into a charm and a strange quark. The data sample was recorded in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS experiment at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed in the process of top quark pair production, where one top quark decays to a bottom quark and a charged Higgs boson, and the other to a bottom quark and a W boson. With the W boson decaying to a charged lepton (electron or muon) and a neutrino, the final state comprises an isolated lepton, missing transverse momentum, and at least four jets, of which two are tagged as b jets. To enhance the search sensitivity, one of the jets originating from the charged Higgs boson is required to satisfy a charm tagging selection. No significant excess beyond standard model predictions is found in the dijet invariant mass distribution. An upper limit in the range 1.68-0.25% is set on the branching fraction of the top quark decay to the charged Higgs boson and bottom quark for a charged Higgs boson mass between 80 and 160 GeV.
Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) for the muon channel after the individual charm tagging categories have been combined.
Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) for the electron channel after the individual charm tagging categories have been combined.
Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) after the individual charm tagging categories and the muon and electron channels have been combined.
Using a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment in 2016-2018, the B$^0_\mathrm{s}$ $\to$ X(3872)$\phi$ decay is observed. Decays into J/$\psi\,\pi^+\pi^-$ and K$^+$K$^-$ are used to reconstruct, respectively, the X(3872) and $\phi$. The ratio of the product of branching fractions $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ X(3872)$\phi)\,\mathcal{B}($X(3872) $\to$ J$/\psi\,\pi^+\pi^-)$ to the product $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ $\psi$(2S)$\phi)\,\mathcal{B}(\psi$(2S) $\to$ J/$\psi\,\pi^+\pi^-)$ is measured to be (2.21 $\pm$ 0.29 (stat) $\pm$ 0.17 (syst))%. The ratio $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ X(3872)$\phi) / \mathcal{B}($B$^{0}$ $\to$ X(3872)K$^0)$ is found to be consistent with one, while the ratio $\mathcal{B}($B$^0_\mathrm{s}$ $\to$ X(3872)$\phi) / \mathcal{B}($B$^+$ $\to$ X(3872)K$^+)$ is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B$^0$ and B$^0_\mathrm{s}$ meson decays compared to B$^+$. The reported observation may shed new light on the nature of the X(3872) particle.
The measured ratio of branching fraction products
Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC are reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector during 2016-2018. The measurements are performed in the leptonic decay modes W$^\pm$Z $\to$ $\ell^\pm\nu\ell'^\pm\ell'^\mp$ and WW $\to$ $\ell^\pm\nu\ell'^\pm\nu$, where $\ell, \ell' = $ e, $\mu$. Differential fiducial cross sections as functions of the invariant masses of the jet and charged lepton pairs, as well as of the leading-lepton transverse momentum, are measured for WW production and are consistent with the standard model predictions. The dependence of differential cross sections on the invariant mass of the jet pair is also measured for WZ production. An observation of electroweak production of WZ boson pairs is reported with an observed (expected) significance of 6.8 (5.3) standard deviations. Constraints are obtained on the structure of quartic vector boson interactions in the framework of effective field theory.
Relative systematic uncertainties in the EW $W^\pm W^\pm$ and WZ cross section measurements in units of percent.
Expected and observed yields from the standard model processeses in the WW signal region. The combination of the statistical and systematic uncertainties are shown. The predicted yields are shown with their best-fit normalizations from the simultaneous fit.
Expected and observed yields from the standard model processeses in the WZ signal region. The combination of the statistical and systematic uncertainties are shown. The predicted yields are shown with their best-fit normalizations from the simultaneous fit.
A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this "disappearing track" signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101 fb$^{-1}$ recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8 $_{-2.3}^{+2.7}$ (stat) $\pm$ 8.1 (syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015-2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.
The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 0.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.
The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 3.3 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.
The expected and observed 95% CL upper limits on the product of cross section and branching fraction for direct production of charginos as a function of chargino mass, for a chargino lifetime of 33 ns and with a purely wino LSP. The branching fraction for $\widetilde{\chi}^{\pm}_{1} \rightarrow \widetilde{\chi}^{0}_{1} \pi^{\pm}$ is set to 100%. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of the previous CMS result obtained in the 2015 and 2016 data sets. The cross section includes both $\widetilde{\chi}^{\pm}_{1} \widetilde{\chi}^{0}_{1}$ and $\widetilde{\chi}^{\pm}_{1}\widetilde{\chi}^{\mp}_{1}$ production in roughly a 2:1 ratio for all chargino masses considered. The dashed line indicates the theoretical prediction.