Photoproduction of the $f_1(1285)$ Meson

The CLAS collaboration Dickson, R. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 93 (2016) 065202, 2016.
Inspire Record 1452551 DOI 10.17182/hepdata.72793

The $f_1(1285)$ meson with mass $1281.0 \pm 0.8$ MeV/$c^2$ and width $18.4 \pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\eta\pi^{+}\pi^{-}$, $K^+\bar{K}^0\pi^-$, and $K^-K^0\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\eta\pi^{+}\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\eta\pi\pi$ go dominantly via the intermediate $a_0^\pm(980)\pi^\mp$ states, with the branching ratio $\Gamma(a_0\pi \text{ (no} \bar{K} K\text{)}) / \Gamma(\eta\pi\pi \text{(all)}) = 0.74\pm0.09$. The branching ratios $\Gamma(K \bar{K} \pi)/\Gamma(\eta\pi\pi) = 0.216\pm0.033$ and $\Gamma(\gamma\rho^0)/\Gamma(\eta\pi\pi) = 0.047\pm0.018$ were also obtained. The first is in agreement with previous data for the $f_1(1285)$, while the latter is lower than the world average.

1 data table

Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.


Measurement of the differential Drell-Yan cross section in proton-proton collisions at $ \sqrt{\mathrm{s}} $ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2019) 059, 2019.
Inspire Record 1711625 DOI 10.17182/hepdata.88043

Measurements of the differential cross section for the Drell-Yan process, based on proton-proton collision data at a centre-of-mass energy of 13 TeV, collected by the CMS experiment, are presented. The data correspond to an integrated luminosity of 2.8 (2.3) fb$^{-1}$ in the dimuon (dielectron) channel. The total and fiducial cross section measurements are presented as a function of dilepton invariant mass in the range 15 to 3000 GeV, and compared with the perturbative predictions of the standard model. The measured differential cross sections are in good agreement with the theoretical calculations.

10 data tables

Summary of the systematic uncertainties (%) for the $ d\sigma / d{m}$ (pb/GeV) measurement in the dimuon channel. The column labelled "Total" corresponds to the quadratic sum of all the experimental sources, except for that Acceptance+PDF.

Summary of the systematic uncertainties (%) for the $ d\sigma / d{m}$ (pb/GeV) measurement in the dielectron channel. The column labelled "Total" corresponds to the quadratic sum of all the experimental sources, except for that Acceptance+PDF.

Summary of the measured values of $ d\sigma / d{m}$ (pb/GeV) in the dimuon channel with the statistical ($\delta_{\text{stat}}$), experimental ($\delta_{\text{exp}}$) and theoretical ($\delta_{\text{theo}}$) uncertainties, respectively. Here, $\delta_{\text{tot}}$ is the quadratic sum of the three components.

More…

Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 052012, 2023.
Inspire Record 2072832 DOI 10.17182/hepdata.130883

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

1 data table

Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.