The e+e- -> p anti-p cross section is determined over a range of p anti-p masses, from threshold to 4.5 GeV/c^2, by studying the e+e- -> p anti-p gamma process. The data set corresponds to an integrated luminosity of 232 fb^-1, collected with the BABAR detector at the PEP-II storage ring, at an e+e- center-of-mass energy of 10.6 GeV. The mass dependence of the ratio of electric and magnetic form factors, |G_E/G_M|, is measured for p anti-p masses below 3 GeV/c^2: its value is found to be significantly larger than 1 for masses up to 2.2 GeV/c^2. We also measure J/psi -> p anti-p and psi(2S) -> p anti-p branching fractions and set an upper limit on Y(4260) -> p anti-p production and decay.
The cross section and effective form factor for E+ E- --> PBAR P.
The cross section and effective form factor for E+ E- --> PBAR P.
Single pi0 photoproduction has been studied with the CB-ELSA experiment at Bonn using tagged photon energies between 0.3 and 3.0 GeV. The experimental setup covers a very large solid angle of about 98% of 4 pi. Differential cross sections (d sigma)/(d Omega) have been measured. Complicated structures in the angular distributions indicate a variety of different resonances being produced in the s channel intermediate state gamma p --> N* (Delta*) --> p pi0. A combined analysis including the data presented in this letter along with other data sets reveals contributions from known resonances and evidence for a new resonance N(2070)D15.
Total cross section for GAMMA P --> P PI0 obtained by integration of the angular distributions and extrapolation into the forward and backward regions using the PWA result.
Differential cross section as a function of c.m. angle for the photon energy range 300 to 425 GeV.
Differential cross section as a function of c.m. angle for the photon energy range 425 to 550 GeV.
Total and differential cross sections for the reaction p(gamma, eta)p have been measured for photon energies in the range from 750 MeV to 3 GeV. The low-energy data are dominated by the S11 wave which has two poles in the energy region below 2 GeV. Eleven nucleon resonances are observed in their decay into p eta. At medium energies we find evidence for a new resonance N(2070)D15 with (mass, width) = (2068+-22, 295+-40) MeV. At photon energies above 1.5 GeV, a strong peak in forward direction develops, signalling the exchange of vector mesons in the t channel.
Total cross section determined by summing the angular bins and extrapolating outside the angular range of the experiment.
Differential cross section as a function of c.m. angle for the photon energy range 750 to 950 GeV.
Differential cross section as a function of c.m. angle for the photon energy range 950 to 1150 GeV.
A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4$\pi$ detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability $\gamma_0$ determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.
Two absorption cross sections, SIG(C=3/2) and SIG(C=1/2), are determined bytwo relative spin configurations, namely parallel and antiparallel. N=RE.
At the tagged photon facility PHOENICS at the Bonn accelerator ELSA a measurement of the target asymmetry of the reaction γp→pη from threshold to 1150 MeV has been performed. Simultaneously the reaction γp→pπ0 has been measured in the first resonance region. Results are presented for both reactions. The target asymmetry data are suited to put considerable constraints on the model parameters used for the theoretical description of meson photoproduction.
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
The errors include statistical and systematic errors added in quadrature. The target asymmetry determines as the rates belonging to different polarization states: (N_pol-up-N_pol_down)/(N_pol-up+N_pol_down).
Differential and total cross sections for the photoproduction of neutral pions from the proton have been measured for incident photon energies from 140–270 MeV, using the photon spectrometer TAPS at the tagged photon beam of the 855 MeV Mainz Microtron. The energy dependence of the s- and p-wave multipoles close to threshold was deduced from a multipole fit and a multipole analysis. The extracted s-wave amplitude E 0+ at threshold is found to be significantly smaller than the prediction of the classical low energy theorems, but is in reasonable agreement with the chiral perturbation theory.
No description provided.
Total and differential cross sections for photoproduction of η mesons from 12 C, 40 Ca, 93 Nb, and nat Pb have been obtained up to 790 MeV incident photon energy at the Mainz Microtron (MAMI) with the TAPS spectrometer. The absorption cross section σ ηN abs = (30 ± 2.5 ± 6)mb of η mesons in nuclear matter and the absorption length λ η = (2.0 ± 0.2 ± 0.4) fm are extracted. No significant depletion of the S 11 (1535) strength in the η photoproduction on nuclei is observed.
THE TOTAL SIG WAS PARAMETRIZED BY A**POWER.
The first measurement of incoherent η-photoproduction from the deuteron in the threshold region is reported. The experiment was carried out at the MAMI accelerator with the TAPS spectrometer. Total and differential inclusive cross sections have been obtained between 627 and 790 MeV. It is found that the reaction is completely dominated by the incoherent part. An upper limit for coherent η-photoproduction on the deuteron is deduced, which is substantially lower than the result from an earlier measurement. The incoherent cross section is reproduced in a participant-spectator approach under the assumption of an energy-independent ratio between the neutron and proton cross sections. Best agreement is found for the ratio σ n σ p ≈ 2 3 . The implications for the isospin components of the electromagnetic excitation of the S 11 (1535) resonance are discussed.
The helicity amplitudes A(1/2) = <S11|j(em)|nucleon> are measured.
The total cross section for γp→ηp near threshold has been measured using the PHOENICS tagging system at the ELSA electron facility of the Physikalisches Institut der Universität Bonn. The photons are created by bremsstrahlung, and are tagged by measuring the momentum of each electron after the photon has been emitted. The recoil proton from γp→ηp is detected by the AMADEUS counter setup in coincidence with the tagging system. Data were taken with AMADEUS at 3.3° in the laboratory, where the large Jacobian increases our event rate so that we obtain the cross section from threshold (Eγ=707.2 MeV) to Eγ≃720 MeV with adequate statistics. The γp→ηp events are identified by kinematics, dE/dx, and timing information. We find that in our energy region the production cross section is consistent with S-wave production.
No description provided.
At the Bonn 2.5 GeV electron synchrotron an angular distribution of the target asymmetry of the reaction γ+d↑→p+n has been measured at photon-lab-energies of 450 and 650 MeV and at proton-CM-angles between 25° and 155°. At 550 MeV the data of our previous run [1] have been improved. Using deuterated ammonia as material for the polarized deuteron target a maximum vector polarization of 44% could be achieved. At 450 and 650 MeV the data are consistent with a smooth sin 2Θ-like distribution. The evidence for a structure around 90° at 550 Mev remains. This might be due to the influence of a higher momentum state (like a dibaryon). The feasibility of measuring the tensor asymmetry of the deuteron photodisintegration with a polarized target has been shown for the first time. Data were taken in a short run for one kinematical setting.
Errors contain both statistics and systematics.