Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.
Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).
Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb~-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c~2, we measure the ttbar production cross section to be 5.5+-1.8 pb.
Different channels are used for evaluation of the cross section magnitudes. The last value is obtained from the previous one by adding the errors in quadrature.
The gauge boson pair production processes Wg, WW, WZ, and Zg were studied using pbarp collisions corresponding to an integrated luminosity of ~14 pb-1 at a center-of-mass energy of sqrt(s) = 1.8 TeV. Analysis of Wg prod with subsequent W boson decay to lv (l=e,mu) is reported, including a fit to the pT spectrum of the photons which leads to limits on anomalous WWg couplings. A search for WW prod with subsequent decay to l-lbar-v-vbar (l=e,mu) is presented leading to an upper limit on the WW prod cross section and limits on anomalous WWg and WWZ couplings. A search for high pT W bosons in WW and WZ prod is described, where one W boson decays to an ev and the second W boson or the Z boson decays to two jets. A maximum likelihood fit to the pT spectrum of W bosons resulted in limits on anomalous WWg and WWZ couplings. A combined fit to the three data sets which provided the tightest limits on anomalous WWg and WWZ couplings is also described. Limits on anomalous ZZg and Zgg couplings are presented from an analysis of the photon ET spectrum in Zg events in the decay channels (ee, mu-mu, and v-vbar) of the Z boson.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
The reaction gamma p -> J/Psi p has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/Psi photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q^2 of 5*10^{-5} GeV^2. The photoproduction cross section, sigma_{gamma p -> J/Psi p}, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter $\delta$ in the form sigma_{gamma p -> J/Psi p} \propto W^{\delta} yields the value \delta = 0.92 \pm 0.14 \pm 0.10. The differential cross section dsigma/d|t| is presented over the range |t| < 1.0 GeV^2 where t is the square of the four-momentum exchanged at the proton vertex. d\sigma/d|t| falls exponentially with a slope parameter of 4.6 \pm 0.4 (+0.4-0.6) GeV^{-2}. The measured decay angular distributions are consistent with s-channel helicity conservation.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the muon channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.
No description provided.
We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb~(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5
No description provided.
Integrated charm cross sections in two Q**2 regions.
Distribution of the fractional momentum of the D* in the gamma*-p system.
The spin density matrix elements for the ϱ 0 , K ∗0 (892) and F produced in hadronic Z 0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K ∗0 (892) and F in the region x p ≤ 0.3 ( x p = p p beam ), where ϱ 00 = 0.33 ± 0.05 and ϱ 00 = 0.30 ± 0.04, respectively. In the fragmentation region, x p ≥ 0.4, there is some indication for spin alignment of the ϱ 0 and K ∗0 (892), since ϱ 00 = 0.43 ± 0.05 and ϱ 00 = 0.46 ± 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the F, ϱ 00 = 0.30 ± 0.04 for x p ≥ 0.4 and 0.55 ± 0.10 for x p ≥ 0.7. The off-diagonal spin density matrix element ϱ 1-1 is consistent with zero in all cases.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Using data collected in the region of the Upsilon(4S) resonance with the CLEO II detector operating at the Cornell Electron Storage Ring CESR, we present the first observation of B mesons decaying into the charmed strange baryons Xi_c0 and Xi_c+. We find 79 +/- 27 Xi_c0 and 125 +/- 28 Xi_c+ candidates from B decays, leading to product branching fractions of BR(Bbar -> Xi_c0 X)BR(Xi_c0 -> Xi- pi+) = (0.144 +/- 0.048 +/- 0.021) x 10~-3 and BR(Bbar -> Xi_c+ X)BR(Xi_c+ -> Xi- pi+ pi+) = (0.453 +/- 0.096 +0.085-0.065) x 10~-3.
Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.
Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.