Measurements of elastic proton-proton differential cross sections for angles between 65° and 90° c.m.s. have been made at 8, 9, 10, 11, 14, 15 and 21 GeV/c. The shape of the angular distribution is found to change suddenly between 8 and 11 GeV/c. An interpretation of this discontinuous behaviour in terms of the reactive effects of baryon-antibaryon pair production is proposed.
No description provided.
No description provided.
The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].
Corrected jet rates.
Second systematic error is theoretical.
A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,
No description provided.
Measurements of proton-proton elastic scattering at angles around 6 mrad have been made at centre-of-mass energies of 23, 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The absolute scale of the cross-section was established by determination of the effective density of the colliding beans in their overlap region. Proton-proton total cross sections were deduced by extrapolation of the elastic differential cross-section to the forward direction and by application of the optical theorem. The results indicate that over the energy range studied the proton-proton total cross-section increases from about 39 to about 43 mb.
No description provided.
NEW VALUES OF ELASTIC SLOPE USING APPARATUS DESCRIBED IN U. AMALDI ET AL., PL 43B, 231 (1973).
The angular distribution of proton-proton elastic scattering has been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of laboratory scattering angles from 12 to about 140 mrad. The results are compared with the fourth power of the electromagnetic form of the proton.
No description provided.
The x dependence of the longitudinal structure function F L was determined with the CHARM neutrino detector exposed to neutrino and antineutrino wide-band beams of the CERN 400 GeV SPS. The results show a clear deviation from the Callan-Gross relation. The amount and the x dependence of this deviation are in agreement with the contribution coming from a finite transverse momentum of the partons in the nucleon if both the intrinsc and perturbative QCD terms are taken into account.
VALUES OF Q**2 FOR EACH POINT IN THE TABLE ARE:- 0.76,3.0,9.3,16.6,18.9.
Total cross-section data are presented for protons, positive pions and positive kaons on protons and deuterons in the momentum range 15 GeV/ c to 60 GeV/ c in 5 GeV/ c steps.
No description provided.
No description provided.
No description provided.
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
Measurements of proton-deuteron scattering have been performed using an incident 24.0 GeV/ c proton beam. Momentum-loss spectra of forward-scattered protons were measured by a single-arm spectrometer over a range of proton angles from 13 to 107 mr. The contributions to the proton spectra of single and double scattering can be separated experimentally, thus allowing estimates of proton-neutron elastic cross sections to be deduced from the data over a range of four-momentum transfer squared, |t| 5.8 GeV 2 . Elastic p - d scattering, in which the proton and deuteron were detected in coincidence, has also been measured over a range of | t | from 0.6 to 1.8 GeV 2 .
No description provided.
EXTRACTED FROM SINGLE AND DOUBLE PEAK DEUTERIUM DATA BY THE GLAUBER METHOD WITH FERMI MOTION CORRECTIONS.
Using the CHARM detector 36 000 deep inelastic neutral-current reactions of neutrinos (and 2000 of antineutrinos) from the 160 GeV narrow-band beam were recorded. The differential cross section d σ d x in the Bjorken scaling variable x was computed by unfolding the effects of limited acceptance and of resolution of the detector as well as the ambiguity of the energy of the incoming neutrinos (produced by π- or K-decay). Combining the results from the neutrino and antineutrino data, the structure functions F 2 and xF 3 and the antiquark momentum distribution measured via the NC coupling were determined. The distributions are in agreement with the corresponding CC distibutions. Comparisons with deep inelastic muon scattering confirm the universality of nuclear structure functions as probed by the weak and the electromagnetic currents.
SEE THE PAPER FOR THE PRECISE DEFNS OF F(+), F(-).