A search for a new massive charged gauge boson, $W'$, is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The reconstructed $tb$ invariant mass is used to search for a $W'$ boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a $W'$ boson with purely right-handed or left-handed chirality in a mass range of 0.5-6 TeV. Different values for the coupling of the $W'$ boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the $s$-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the $W' \rightarrow tb$ production cross-section times branching ratio as a function of the $W'$-boson mass and in the plane of the coupling vs the $W'$-boson mass.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=contour_lh">$W^{\prime}_L$ exclusion contour</a> <li><a href="?table=contour_rh">$W^{\prime}_R$ exclusion contour</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=limit_lh_gf05">$W^{\prime}_L$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_lh_gf10">$W^{\prime}_L$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_lh_gf20">$W^{\prime}_L$ $g^{\prime}/g$ = 2.0 upper limit</a> <li><a href="?table=limit_rh_gf05">$W^{\prime}_R$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_rh_gf10">$W^{\prime}_R$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_rh_gf20">$W^{\prime}_R$ $g^{\prime}/g$ = 2.0 upper limit</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=0l_sr1">0L channel Signal Region 1</a> <li><a href="?table=0l_sr2">0L channel Signal Region 2</a> <li><a href="?table=0l_sr3">0L channel Signal Region 3</a> <li><a href="?table=0l_vr">0L channel Validation Region</a> <li><a href="?table=1l_sr_2j1b">1L channel 2j1b Signal Region</a> <li><a href="?table=1l_sr_3j1b">1L channel 3j1b Signal Region</a> <li><a href="?table=1l_sr_2j2b">1L channel 2j2b Signal Region</a> <li><a href="?table=1l_sr_3j2b">1L channel 3j2b Signal Region</a> <li><a href="?table=1l_cr_2j1b">1L channel 2j1b Control Region</a> <li><a href="?table=1l_cr_3j1b">1L channel 3j1b Control Region</a> <li><a href="?table=1l_vr_2j1b">1L channel 2j1b Validation Region</a> <li><a href="?table=1l_vr_3j1b">1L channel 3j1b Validation Region</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=acc_0l_lh_gf10">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf05">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf20">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf10">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf05">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf20">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf10">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf05">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf20">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf10">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf05">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf20">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> </ul>
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 1 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 2 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a $\tau$ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with $\tau$ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonant $t$-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-$\tau$ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5-2.3 TeV, and up to 3 TeV for $t$-channel LQ exchange. Leptoquarks are excluded below masses of 1.22-1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant $\tau\tau$ production through $t$-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained.
Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $S_\mathrm{T}^\mathrm{MET} > 800\,\mathrm{GeV}$ and are computed with respect to all possible decay modes of two $\tau$ leptons.
Product of acceptance and efficiency of a vector LQ signal as a function of LQ mass under the assumption of exclusive LQ couplings to b quarks and $\tau$ leptons. The acceptances and efficiencies are restricted to the sensitive region of $\chi < 4$ and are computed with respect to all possible decay modes of two $\tau$ leptons.
Postfit distributions of $S_\mathrm{T}^\mathrm{MET}$ in the $\mathrm{e}\mu$ channel of the 0b category for the combined 2016-2018 data set after a simultaneous fit of the background and vector LQ signal to the data. The number of events in each bin are divided by the respective bin width. The last bin includes the overflow.
Measurements of the production cross sections of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{\ast +}}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, and ${\rm \Xi_{c}^{+}}$ charm hadrons at midrapidity in proton$-$proton collisions at $\sqrt{s}=13$ TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum ($p_{\rm T}$) are provided with improved precision and granularity. The ratios of $p_{\rm T}$-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-$x$ ($10^{-5}-10^{-4}$). The measurements of ${\rm \Lambda_{c}^{+}}$ (${\rm \Xi_{c}^{+}}$) baryon production extend the measured $p_{\rm T}$ intervals down to $p_{\rm T}=0(3)$~GeV$/c$. These measurements are used to determine the charm-quark fragmentation fractions and the ${\rm c\overline{c}}$ production cross section at midrapidity ($|y|<0.5$) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, ${\rm \Xi_{c}^{0}}$ and, for the first time, ${\rm \Xi_{c}^{+}}$, and of the strongly-decaying J/$psi$ mesons. The first measurements of ${\rm \Xi_{c}^{+}}$ and ${\rm \Sigma_{c}^{0,++}}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e$^+$e$^-$ and ep collisions. The ${\rm c\overline{c}}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.
$p_{\mathrm{T}}$-differential $\mathrm{D}^{0}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{0}\rightarrow\mathrm{K}^-\pi^+$: $(3.95 \pm 0.03)\%$. Global relative uncertainty on BR: $0.8\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{+}\rightarrow\mathrm{K}^-\pi^+\pi^+$: $(9.38 \pm 0.16)\%$. Global relative uncertainty on BR: $1.7\%$ Global relative uncertainty on luminosity: $1.6\%$
$p_{\mathrm{T}}$-differential $\mathrm{D}^{+}$ production cross section at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 13 TeV Branching ratio of $\mathrm{D}^{*+}\rightarrow\mathrm{D}^0(\rightarrow\mathrm{K}^-\pi^+)\pi^+$: $(2.67 \pm 0.03)\%$. Global relative uncertainty on BR: $1.1\%$ Global relative uncertainty on luminosity: $1.6\%$
We present a search for magnetic monopoles and high-electric-charge objects using LHC Run 2 $\sqrt{s} =$13 TeV proton$-$proton collisions recorded by the ATLAS detector. A total integrated luminosity of 138 fb$^{-1}$ was collected by a specialized trigger. No highly ionizing particle candidate was observed. Considering the Drell-Yan and photon-fusion pair production mechanisms as benchmark models, cross-section upper limits are presented for spin-0 and spin-$\frac{1}{2}$ magnetic monopoles of magnetic charge $1g_\textrm{D}$ and $2g_\textrm{D}$ and for high-electric-charge objects of electric charge $20 \leq |z| \leq 100$, for masses between 200 GeV and 4000 GeV. The search improves by approximately a factor of three the previous cross-section limits on the Drell-Yan production of magnetic monopoles and high-electric charge objects. Also, the first ATLAS limits on the photon-fusion pair production mechanism of magnetic monopoles and high-electric-charge objects have been obtained.
Observed 95% CL upper limits on the cross section for all masses and charges of Drell-Yan spin-0 monopoles production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% CL upper limits on the cross section for all masses and charges of Drell-Yan spin-1/2 monopoles production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% CL upper limits on the cross section for all masses and charges of photon-fusion pair-produced spin-0 monopoles as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
This letter reports the observation of $W(\ell\nu)\gamma\gamma$ production in proton-proton collisions. This measurement uses the full Run 2 sample of events recorded at a center-of-mass energy of $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with a leptonically-decaying $W$ boson and at least two photons are considered. The background-only hypothesis is rejected with an observed and expected significance of $5.6$ standard deviations. The inclusive fiducial production cross section of $W(e\nu)\gamma\gamma$ and $W(\mu\nu)\gamma\gamma$ events is measured to be $\sigma_{\mathrm{fid}} = 13.8 \pm 1.1 (\mathrm{stat}) \substack{+2.1 \\ -2.0} (\mathrm{syst}) \pm 0.1 (\mathrm{lumi})$ fb, in agreement with the Standard Model prediction.
The measured fiducial $W(\rightarrow e\nu / \mu\nu)\gamma\gamma$ integrated cross section compared with both the signal event generator predictions.
The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.
Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.
Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.
Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets
A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented using proton-proton collision data recorded by the CMS experiment at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$^{-1}$. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $\mu^\text{qqH}_\mathrm{Hb\bar{b}}$ = 1.01 $^{+0.55}_{-0.46}$. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $\mu^\text{incl.}_\mathrm{Hb\bar{b}}$ = 0.99 $^{+0.48}_{-0.41}$, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.
The mbb distribution after weighted combination of all categories in the analysis weighted with S/(S + B). where S is the total Hbb signal yield (both VBF and ggH) and B is the total background yield including QCD multijet and Z+jets
The best fit values of the signal strength modifier for the different processes. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown.
The best fit values of the signal strength modifier for the different processes by floating the VBF and ggH production rates independently. The uncertainties, corresponding to one standard deviation confidence intervals, include both statistical and systematic sources. The additional breakdown of the uncertainties into their separate statistical and systematic contributions is also shown.
A search for quantum black holes in electron+jet and muon+jet invariant mass spectra is performed with 140 fb$^{-1}$ of data collected by the ATLAS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross-sections times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.
The 95% CL model-independent upper limits on $\sigma \times Br$ for the non-SM signal production with decay into the lepton+jet. The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the lower border of the SR (threshold of SR, Th$_\mathrm{SR}$), above which the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands of expected limits are shown in green and yellow, respectively. The limits are obtained with pseudo-experiments.
The combined 95% CL upper limits on $\sigma \times Br$ as a function of threshold mass, $M_\mathrm{th}$, for QBH production with decay into lepton+jet for ADD-model (extra dimensions n = 6). The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the mass $M_\mathrm{th}$ of the signal where the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands are shown in green and yellow, respectively. The theoretically predicted $\sigma \times Br$ for the QBH production and decay is shown as the solid blue curve with squares.
The combined 95% CL upper limits on $\sigma \times Br$ as a function of threshold mass, $M_\mathrm{th}$, for QBH production with decay into lepton+jet for RS1-model (extra dimensions n = 1). The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the mass $M_\mathrm{th}$ of the signal where the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands are shown in green and yellow, respectively. The theoretically predicted $\sigma \times Br$ for the QBH production and decay is shown as the solid blue curve with squares.
New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.
A search for a new heavy scalar particle $X$ decaying into a Standard Model (SM) Higgs boson and a new singlet scalar particle $S$ is presented. The search uses a proton-proton ($pp$) collision data sample with an integrated luminosity of 140 fb$^{-1}$ recorded at a centre-of-mass energy of $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. The most sensitive mass parameter space is explored in $X$ mass ranging from 500 to 1500 GeV, with the corresponding $S$ mass in the range 200-500 GeV. The search selects events with two hadronically decaying $\tau$-lepton candidates from $H\to \tau^+\tau^-$ decays and one or two light leptons ($\ell=e,\,\mu$) from $S\to VV$ ($V = W,\,Z$) decays while the remaining $V$ boson decays hadronically or to neutrinos. A multivariate discriminant based on event kinematics is used to separate the signal from the background. No excess is observed beyond the expected SM background and 95% confidence level upper limits between 72 fb and 542 fb are derived on the cross-section $\sigma(pp\to X\to SH)$ assuming the same SM-Higgs boson-like decay branching ratios for the $S\to VV$ decay. Upper limits on the visible cross-sections $\sigma(pp\to X\to SH \to WW\tau\tau)$ and $\sigma(pp\to X\to SH \to ZZ\tau\tau)$ are also set in the ranges 3-26 fb and 6-33 fb, respectively.
Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH)$ obtained from $WW1\ell2\tau_{\mathrm{had}}$, $WW2\ell2\tau_{\mathrm{had}}$, $ZZ2\ell2\tau_{\mathrm{had}}$, and their combination, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV.
Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH\to WW\tau\tau)$ obtained from the combination of $WW1\ell2\tau_{\mathrm{had}}$ and $WW2\ell2\tau_{\mathrm{had}}$ channels, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV. The NMSSM scans of the allowed cross-sections for $\sigma(pp\to X\to SH\to WW\tau\tau)$ are also compared.
Observed and expected 95% CL upper limits are shown for $\sigma(pp\to X\to SH\to ZZ\tau\tau)$ obtained from $ZZ2\ell2\tau_{\mathrm{had}}$ channel, as a function of combined $m_{S}$ and $m_{X}$ masses ($m_{S}$+$m_{X}/25$) in GeV. The NMSSM scans of the allowed cross-sections for $\sigma(pp\to X\to SH\to ZZ\tau\tau)$ are also compared.