A measurement of the reaction νe+e−→νe+e− was performed using a beam-stop source of νe. Based upon 234±35 events, we obtain a cross section of σ(νee)=[9.9±1.5(stat)±1.0(syst)]×10−42 cm2 ×[Eν (GeV)]. This reaction is mediated by the exchange of W and Z bosons and is thus sensitive to the interference between them. This interference is measured to be -1.07±0.17(stat)±0.11(syst), consistent with the destructive interference (-1.08) predicted by the standard model.
No description provided.
We report the first observation and cross-section measurement of νe+e−→νe+e−. Using neutrinos of energy less than 53 MeV, we observed 63±17 events consistent with ν+e−→ν+e−, of which 51±17 events are assigned to νe+e−→νe+e−. The resulting cross section, {[8.9±3.2(statistical) ±1.5(systematic)]×10−45 cm2/MeV} Eν, agrees with standard electroweak theory, rules out constructive interference between weak charged-current and neutral-current interactions, and begins to indicate the existence of interference between these two interactions.
No description provided.
Neutrino-electron elastic scattering was observed with a 15-ton fine-grained tracking calorimeter exposed to electron neutrinos from muon decay at rest. The measured νee−→νee− elastic scattering rate of 236±35 events yields the total elastic scattering cross section 10.0±1.5(stat)±0.9(syst)×10−45 cm2×[Eν (MeV)], and a model-independent measurement of the strength of the destructive interference between the charged and neutral currents, I=−1.07±0.21, that agrees well with the standard model (SM) prediction I=−1.08. The agreement between the measured electroweak parameters and SM expectations is used to place limits on neutrino properties, such as neutrino flavor-changing neutral currents and neutrino electromagnetic moments. Limits are placed on the masses of new bosons that interact with leptons: for a neutral tensor boson, MT>105 GeV; for a neutral (pseudo)scalar boson, MP,S>47 GeV; for a charged Higgs boson, Mχ+>87 GeV; and for a purely left-handed charged (neutral) vector boson, Mx>239 (119) GeV.
No description provided.
No description provided.
We have measured the multiplicities of particles emitted in collisions between π's and p's of 1.5 to 2.5 GeV/c momentum with He and Ne nuclei in a streamer chamber. The chamber gas served as the target as well as the detecting medium. Because of the low density and 4π solid angle of the detector, it was possible to detect nuclear fragments with energies less than 5 MeV, and to essentially count all the particles emitted in a collision. Event distributions as a function of track multiplicity were obtained as well as correlated event distributions. NUCLEAR REACTIONS He (proton or pion, fragments and pions), Ne (proton or pion, fragments and pions), E=1.5, 2.0, 2.5 BeV/c; streamer chamber gas used as target with fragment energies as low as 5 MeV. Measured multiplicities and correlations of produced particle types.
We present data on dimuon production by 16 GeV π + and π − beams on a Cu target. From the data we evaluate, for π − N collisions, the fraction of dimuon events that originate from the annihilation process q q ̄ → μ + μ − . Using this information the experimentally determined cross section for the process q q ̄ → μ + μ − is observed to be in agreement with the Drell-Yan model over a wide range of incident energies. The observed deviations from exact scaling are of the order predicted by QCD calculations for the Q 2 -dependence of the nucleon and the pion structure function.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
We have measured the inclusive production of J ψ in 16 and 22 GeV π − copper collisions in a wide aperture magnetic spectrometer. The cross section per Cu nucleus for x > 0 corrected for branching ratio is 64 ± 38 nb at 16 GeV and 196 ± 38 nb at 22 GeV. As threshold is approached, the mean values of the Feynman x distribution increase and the cross section for J ψ production drops steeply. This can be understood in terms of the quark-fusion model where the antiquark content of the pion makes an increasingly significant contribution as M 2 s increases.
A coupled channel analysis has been carried out using a new amplitude analysis of the K 0 s K 0 s system produced in the reaction π − p→K 0 s K 0 s n at 22 GeV/ c , which contained about 40 000 new events in the low- t region (| t − t min |<0.1 GeV 2 ). Here only the I G =0 + , J PC =2 ++ amplitude from this analysis is considered, together with available data from other experiments in channels with the same quantum numbers in order to determine which 2 ++ isoscalar mesons have significant pseudoscalar-pseudoscalar couplings. It is found that four poles, f(1270), f'(1525), θ(1690), and f r (1810), are needed, plus a smooth background in order to fit these data; the need for the θ(1690) depends on the J/ψ radiative decay alone, and the f r (1810) is seen only in hadronic production.
No description provided.
This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.
Invariant mass of the photon+jet pair for events passing the final selections. The number of observed events and the fit background estimates are given in each bin, where the fit estimates are rounded to the nearest integer.
The 95% CL upper limits on SIG*BR*A*EPSILON for a hypothetical signal with a Gaussian-shaped M(GAMMA JET) distribution as a function of the signal mass M(G) for four values of the relative width SIGMA(G) / M(G).
Acceptance (A), efficiency (EPSILON), cross-section (SIG) and limits in number of events for the quantum black hole (QBH) benchmark model, as a function of the threshold mass M(th). Uncertainties on the cross section are on the order of 1%. The limits include statistical uncertainties only. Expected limits include the 68% uncertainty band. Acceptance was calculated using parton-level quantities by imposing criteria that apply directly to kinematic selections (photon/jet |eta|, photon/jet transverse momentum, Delta(eta), Delta(R)). All other selections, which in general correspond to event and object quality criteria, were used to calculate the efficiency based on the events included in the acceptance.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.
Searches for heavy long-lived charged particles are performed using a data sample of 19.8 fb$^{-1}$ from proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for $\tan\beta$ between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. $R$-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.
Cross-section upper limits as a function of the $\tilde{\tau}_1$ mass for direct $\tilde{\tau}_1$ production and three values of $\tan\beta$. Expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties observed limits for three values of $\tan\beta$ and theoretical cross-section prediction for $\tan\beta=10$ with $\pm 1\sigma$ band.
Cross-section upper limits as a function of the $\tilde{\chi}_1$ mass for $\tilde{\tau}_1$ sleptons resulting from the decay of directly produced charginos and neutralinos in GMSB. Observed limits, expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties and theoretical cross-section prediction (dominated by $\tilde{\chi}^0_1 \tilde{\chi}^+_1$ production) with $\pm 1\sigma$ uncertainty. Depending on the hypothesis and to a small extent on $\tan\beta$, in these models, the chargino mass is 210 to 260 GeV higher than the neutralino mass.
Cross-section upper limits for various chargino masses in stable-chargino models. Expected limit with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties, observed limit and theoretical cross-section prediction with $\pm 1\sigma$ uncertainties.