Date

Search for Higgs boson decays into a $Z$ boson and a light hadronically decaying resonance in 140 fb$^{-1}$ of 13 TeV $p$$p$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-261, 2024.
Inspire Record 2851948 DOI 10.17182/hepdata.153859

A search for decays of the Higgs boson into a $Z$ boson and a light resonance, with a mass of 0.5-3.5 GeV, is performed using the full 140 fb$^{-1}$ dataset of 13 TeV proton-proton collisions recorded by the ATLAS detector during Run~2 of the LHC. Leptonic decays of the $Z$ boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a $J/\psi$ or $\eta_c$ meson, an axion-like particle, or a light pseudoscalar in two-Higgs-doublet models. Due to its low mass, it would be produced with high boost and reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the background in a data-driven way. Two additional neural networks are used to distinguish signal from background. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a $Z$ boson and a light resonance. The exclusion limit is 10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling $C^\text{eff}_{ZH}/\Lambda$ of an axion-like particle to a Higgs boson and $Z$ boson are also set at 95% confidence level, and range from 0.9 to 2 TeV$^{-1}$.

10 data tables

The angularity, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.

The modified energy correlation function, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.

$Z$ boson transverse momentum, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.

More…

Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
FERMILAB-PUB-24-0796-V, 2024.
Inspire Record 2841863 DOI 10.17182/hepdata.155182

We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $\beta$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.1\times10^{-48}$ cm$^{2}$ at the 90% confidence level at a mass of 36 GeV/$c^2$, and the best SI median sensitivity achieved is $5.0\times10^{-48}$ cm$^{2}$ for a mass of 40 GeV/$c^2$.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Search for a light CP-odd Higgs boson decaying into a pair of $\tau$-leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2024) 126, 2024.
Inspire Record 2836178 DOI 10.17182/hepdata.153948

This paper reports a search for a light CP-odd scalar resonance with a mass of 20 GeV to 90 GeV in 13 TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider. The analysis assumes the resonance is produced via gluon-gluon fusion and decays exclusively into a $\tau^{+}\tau^{-}$ pair which decays into a fully leptonic $\mu^{+}\nu_{\mu} \bar{\nu}_{\tau} e^{-} \bar{\nu}_{e} \nu_{\tau}$ or $e^{+}\nu_{e}\bar{\nu}_{\tau} \mu^-\bar{\nu}_{\mu}\nu_{\tau}$ final state. No significant excess of events above the predicted Standard Model background is observed. The results are interpreted within a flavour-aligned two-Higgs-doublet model, and a model-independent cross-section interpretation is also given. Upper limits at 95% confidence level between 3.0 pb and 68 pb are set on the cross-section for producing a CP-odd Higgs boson that decays into a $\tau^+\tau^-$ pair.

5 data tables

Post-fit $m_\mathrm{MMC}$ distribution in the low-mass SR for the $m_A = 20\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. Total includes all backgrounds and the signal process. The low-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 0.7$ - $E_\mathrm{T}^\mathrm{miss} > 50\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 45\,\mathrm{GeV}$ - $m_\mathrm{MMC} > 0\,\mathrm{GeV}$

Post-fit $m_\mathrm{MMC}$ distribution in the high-mass SR for the $m_A = 90\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. otal includes all backgrounds and the signal process. The high-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 1.0$ - $E_\mathrm{T}^\mathrm{miss} > 30\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 65\,\mathrm{GeV}$ - $35\,\mathrm{GeV} < m_\mathrm{MMC} < 130\,\mathrm{GeV}$

Expected and observed $95\%$ CL limits on the production cross-section for $gg\rightarrow A$ times the branching ratio for $A$ decaying into two $\tau$-leptons for $A$ boson masses ranging from $20$ to $90\,\mathrm{GeV}$.

More…

Search for same-charge top-quark pair production in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-226, 2024.
Inspire Record 2832100 DOI 10.17182/hepdata.155341

A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\% $ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.

15 data tables

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.

More…

Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 860 (2025) 139177, 2025.
Inspire Record 2829504 DOI 10.17182/hepdata.154444

Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton-proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb$^{-1}$, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two $b$-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of $b$-jets and $c$-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ production are measured to be $1.28^{+0.27}_{-0.24}\;\text{pb}$ and $6.4^{+1.0}_{-0.9}\;\text{pb}$, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive $t\bar{t}$ and $t\bar{t}+b\bar{b}$ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various $t\bar{t}$ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity, the cross-section ratios of $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ to total $t\bar{t}+\text{jets}$ production are determined to be $(1.23 \pm 0.25) \%$ and $(8.8 \pm 1.3) \%$.

22 data tables

Measured cross-section values in the fiducial phase space and inclusive volume for the various $t\bar{t}+jets$ categories.

Post-fit agreement between data and MC prediction for $SR_{\mathrm{loose}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest c-tagged jets, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.

Post-fit agreement between data and MC prediction for the $SR_{\mathrm{tight}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest jets tagged with c@11%, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.

More…

Multiplicity dependent $J/\psi$ and $\psi(2S)$ production at forward and backward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
2024.
Inspire Record 2825244 DOI 10.17182/hepdata.155565

The $J/\psi$ and $\psi(2S)$ charmonium states, composed of $c\bar{c}$ quark pairs and known since the 1970s, are widely believed to serve as ideal probes to test quantum chromodynamics in high-energy hadronic interactions. However, there is not yet a complete understanding of the charmonium-production mechanism. Recent measurements of $J/\psi$ production as a function of event charged-particle multiplicity at the collision energies of both the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) show enhanced $J/\psi$ production yields with increasing multiplicity. One potential explanation for this type of dependence is multiparton interactions (MPI). We carry out the first measurements of self-normalized $J/\psi$ yields and the $\psi(2S)$ to $J/\psi$ ratio at both forward and backward rapidities as a function of self-normalized charged-particle multiplicity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. In addition, detailed {\sc pythia} studies tuned to RHIC energies were performed to investigate the MPI impacts. We find that the PHENIX data at RHIC are consistent with recent LHC measurements and can only be described by {\sc pythia} calculations that include MPI effects. The forward and backward $\psi(2S)$ to $J/\psi$ ratio, which serves as a unique and powerful approach to study final-state effects on charmonium production, is found to be less dependent on the charged-particle multiplicity.

6 data tables

Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm before subtraction

Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for the same arm after subtraction

Self-normalized $J/\psi$ yields as a function of self-normalized $N_{ch}$ for opposite arms

More…

Search for heavy right-handed Majorana neutrinos in the decay of top quarks produced in proton$-$proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 112004, 2024.
Inspire Record 2816994 DOI 10.17182/hepdata.155342

A search for heavy right-handed Majorana neutrinos is performed with the ATLAS detector at the CERN Large Hadron Collider, using the 140 $\mathrm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected during Run 2. This search targets $t\bar{t}$ production, in which both top quarks decay into a bottom quark and a $W$ boson, where one of the $W$ bosons decays hadronically and the other decays into an electron or muon and a heavy neutral lepton. The heavy neutral lepton is identified through a decay into an electron or muon and another $W$ boson, resulting in a pair of same-charge same-flavor leptons in the final state. This paper presents the first search for heavy neutral leptons in the mass range of 15-75 GeV using $t\bar{t}$ events. No significant excess is observed over the background expectation, and upper limits are placed on the signal cross-sections. Assuming a benchmark scenario of the phenomenological type-I seesaw model, these cross-section limits are then translated into upper limits on the mixing parameters of the heavy Majorana neutrino with Standard Model neutrinos.

8 data tables

Definitions of different signal and control regions. The control regions are enriched in events from the following processes. ttW, heavy-flavor (HF) fake, photon-conversion (PC), and charge-flip (CF). The 'Z veto' is defined as $m_{ee}$ not in [$m_Z$ - 10 GeV, $m_Z$ + 10 GeV].

Post-fit event yields for the different background processes in the signal regions, as obtained from the background-only fit in the high-mass region.

Expected and observed upper limits on the signal cross-sections at 95% CL.

More…

Observation of exotic $J/\psi\phi$ resonances in diffractive processes in proton-proton collisions

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellan Beteta, Carlos ; et al.
LHCb-PAPER-2023-043, 2024.
Inspire Record 2809344 DOI 10.17182/hepdata.153613

The first study of $J/\psi\phi$ production in diffractive processes in proton-proton collisions is presented. The study is based on an LHCb dataset recorded at centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5 fb$^{-1}$. The data disfavour a nonresonant $J/\psi\phi$ production but are consistent with a resonant model including several resonant states observed previously only in $B^+ \to J/\psi\phi K^+$ decays. The $\chi_{c0}(4500)$ state is observed with a significance over $5\sigma$ and the $\chi_{c1}(4274)$ is confirmed with a significance of more than $4\sigma$.

6 data tables

Total $J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.

$\chi_{c1}(4140) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.

$\chi_{c1}(4274) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-)$ diffractive production cross-section, multiplied by $\mathcal{B}(J/\psi \to \mu^+ \mu^-)$ and $\mathcal{B}(\phi \to K^+ K^-)$ branching ratios.

More…

Measurement of $t\bar{t}$ production in association with additional $b$-jets in the $e\mu$ final state in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-191, 2024.
Inspire Record 2809112 DOI 10.17182/hepdata.153521

This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.

211 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> ATLAS public webpage of paper: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2019-03/">link</a><br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> Common: N E = N MU = 1, CHARGE E != CHARGE MU <li> NJETS &gt;= 2, NBJETS &gt;= 2 <li> NJETS &gt;= 3, NBJETS &gt;= 3 <li> NJETS &gt;= 4, NBJETS &gt;= 3 <li> NJETS &gt;= 4, NBJETS &gt;= 4 <li> NJETS &gt;= 5, NBJETS &gt;= 4 </ul><br/> <b>Objects definitions:</b> <ul> <li> LEP PT &gt; 28 GeV, ABS ETARAP LEP &lt; 2.5 <li> JET PT &gt; 25 GeV, ABS ETARAP JET &lt; 2.5, R JET = 0.4 <li> BJET: &gt;=1 b-hadron with PT &gt; 5 GeV is associated to the jet via ghost matching </ul><br/> <b>Particle level:</b><br/> <br/>Data from Table 06: <a href="153521?table="Fiducial xsec results>Fiducial xsec results </a><br/><br/> <u>1D:</u><br/> Data bootstraps: <ul> <li> Data from Figure 09: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥2b$">Bootstrap $N_{b-jets}$ in $≥2b$ </a> <li> Data from Figure 10a: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥3b$">Bootstrap $N_{b-jets}$ in $≥3b$ </a> <li> Data from Figure 10b: <a href="153521?table=Bootstrap $N_{c/l-jets}$ in $≥3b$">Bootstrap $N_{c/l-jets}$ in $≥3b$ </a> <li> Data from Figure 10c: <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥3b$">Bootstrap $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Figure 10d: <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Figure 11a: <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥3b$">Bootstrap $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Figure 11b: <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Figure 11c: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Figure 11d: <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Figure 12a: <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥3b$">Bootstrap $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Figure 12b: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 13a: <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥3b$">Bootstrap $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13b: <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13c: <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥3b$">Bootstrap $m(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 13d: <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥3b$">Bootstrap $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 14a: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 14b: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14c: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14d: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 15a: <a href="153521?table=Bootstrap $m(bb^{min\Delta R})$ in $≥4b$">Bootstrap $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15b: <a href="153521?table=Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$">Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15c: <a href="153521?table=Bootstrap $m(bb^{add})$ in $≥4b$">Bootstrap $m(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 15d: <a href="153521?table=Bootstrap $p_{T}(bb^{add})$ in $≥4b$">Bootstrap $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 01a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥3b$">Bootstrap $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Figure 01b (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Figure 02a (aux): <a href="153521?table=Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$">Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 02b (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥3b$">Bootstrap $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Figure 03a (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Figure 03b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Figure 04a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥3b$">Bootstrap $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Figure 04b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 05a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥3b$">Bootstrap $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Figure 05b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥3b$">Bootstrap $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Figure 05c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Figure 05d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Figure 06a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥4b$">Bootstrap $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Figure 06b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Figure 06c (axu): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Figure 06d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Figure 07a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥4b$">Bootstrap $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Figure 07b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{4})$ in $≥4b$">Bootstrap $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Figure 07c (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 07d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Figure 08a (aux): <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥4b$">Bootstrap $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 08b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 09a (aux): <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥4b$">Bootstrap $m(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 09b (aux): <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥4b$">Bootstrap $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 10a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥4b$">Bootstrap $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Figure 10b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 11a (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥4b$">Bootstrap $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Figure 11b (aux): <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥4b$">Bootstrap $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Figure 11c (aux): <a href="153521?table=Bootstrap min$\Delta R(bb)$ in $≥4b$">Bootstrap min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Figure 11d (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 12a (aux): <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Figure 12b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Figure 12c (aux): <a href="153521?table=Bootstrap $N_{l/c-jets}$ in $≥4b$">Bootstrap $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Figure 13a (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13b (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13c (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13d (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 14a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥4b$">Bootstrap $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Figure 14b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥4b$">Bootstrap $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Figure 14c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Figure 14d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Figure 15a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥4b$">Bootstrap $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Figure 15b (aux): <a href="153521?table=Bootstrap $|\eta(b_{4})|$ in $≥4b$">Bootstrap $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Figure 15c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Figure 15d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$ </a> </ul><br/> Measurements: <ul> <li> Data from Table 01 (aux): <a href="153521?table=Diff. XS $N_{b-jets}$ in $≥2b$">Diff. XS $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 02 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥3b$">Diff. XS $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 03 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥3b$">Diff. XS $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 04 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 05 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 06 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥3b$">Diff. XS $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 07 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 08 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 09 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 10 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥3b$">Diff. XS $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 11 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 12 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥3b$">Diff. XS $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 13 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 14 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥3b$">Diff. XS $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 15 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 16 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥3b$">Diff. XS $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 17 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 18 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥3b$">Diff. XS $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 19 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 20 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥3b$">Diff. XS $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 21 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥3b$">Diff. XS $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 22 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 23 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥3b$">Diff. XS $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 24 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 25 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥3b$">Diff. XS $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 26 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 27 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 28 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 29 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 30 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 31 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 32 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥4b$">Diff. XS $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 33 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥4b$">Diff. XS $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 34 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 35 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 36 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥4b$">Diff. XS $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 37 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 38 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 39 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 40 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥4b$">Diff. XS $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 41 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 42 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{4})$ in $≥4b$">Diff. XS $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 43 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 44 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥4b$">Diff. XS $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 45 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 46 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥4b$">Diff. XS $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 47 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 48 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥4b$">Diff. XS $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 49 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 50 (aux): <a href="153521?table=Diff. XS $|\eta(b_{4})|$ in $≥4b$">Diff. XS $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 51 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 52 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥4b$">Diff. XS $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 53 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 54 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥4b$">Diff. XS $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 55 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥4b$">Diff. XS $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 56 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 57 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥4b$">Diff. XS $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 58 (aux): <a href="153521?table=Diff. XS $m(bb^{min\Delta R})$ in $≥4b$">Diff. XS $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 59 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$">Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 60 (aux): <a href="153521?table=Diff. XS $m(bb^{add})$ in $≥4b$">Diff. XS $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 61 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{add})$ in $≥4b$">Diff. XS $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 62 (aux): <a href="153521?table=Diff. XS $min\Delta R(bb)$ in $≥4b$">Diff. XS $min\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 63 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 64 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥4b$">Diff. XS $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 65 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 66 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 67 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 68 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 69 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 70 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/> <u>2D:</u><br/> Correlation matrices: <ul> <li> Data from Table 71 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥2b$">Corr. mtrx $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 72 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥3b$">Corr. mtrx $N_{b-jets}$ in $≥3b$ </a> <li> Data from Table 73 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥3b$">Corr. mtrx $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 74 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥3b$">Corr. mtrx $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 75 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 76 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 77 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 78 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 79 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 80 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 81 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥3b$">Corr. mtrx $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 82 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 83 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 84 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 85 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 86 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 87 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥3b$">Corr. mtrx $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 88 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 89 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 90 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 91 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥3b$">Corr. mtrx $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 92 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 93 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 94 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 95 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 96 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥3b$">Corr. mtrx $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 97 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 98 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 99 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 100 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 101 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 102 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 103 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥4b$">Corr. mtrx $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 104 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥4b$">Corr. mtrx $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 105 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 106 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 107 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 108 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 109 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 110 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 111 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥4b$">Corr. mtrx $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 112 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 113 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{4})$ in $≥4b$">Corr. mtrx $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 114 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 115 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 116 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 117 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 118 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 119 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥4b$">Corr. mtrx $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 120 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 121 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{4})|$ in $≥4b$">Corr. mtrx $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 122 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 123 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 124 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 125 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥4b$">Corr. mtrx $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 126 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 127 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 128 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 129 (aux): <a href="153521?table=Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 130 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 131 (aux): <a href="153521?table=Corr. mtrx $m(bb^{add})$ in $≥4b$">Corr. mtrx $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 132 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 133 (aux): <a href="153521?table=Corr. mtrx min$\Delta R(bb)$ in $≥4b$">Corr. mtrx min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 134 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 135 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥4b$">Corr. mtrx $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 136 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 137 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 138 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 139 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 140 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 141 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/>

Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.

Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.

More…

Version 2
Combination of searches for singly and doubly charged Higgs bosons produced via vector-boson fusion in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 860 (2025) 139137, 2025.
Inspire Record 2807795 DOI 10.17182/hepdata.153847

A combination of searches for singly and doubly charged Higgs bosons, $H^{\pm}$ and $H^{\pm\pm}$, produced via vector-boson fusion is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross-section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.

5 data tables

Post-fit $m_{\mathrm{WZ}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.

Post-fit $m_{\mathrm{T}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.

Expected and observed exclusion limits at 95% CL for $\sigma_{\mathrm{VBF}}(H_{5}^{\pm}) \times \mathcal{B}(H_{5}^{\pm} \to W^{\pm}Z)$ as a function of $m_{\mathrm{H_5}}$. The inner (outer) band represents the $68\%$ ($95\%$) confidence interval around the median expected limit.

More…