Date

EXCLUSIVE PRODUCTION OF PROTON - ANTI-PROTON PAIRS IN TWO PHOTON COLLISIONS AT PEP

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 36 (1987) 3506, 1987.
Inspire Record 246557 DOI 10.17182/hepdata.23356

We report cross sections for the process γγ→pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e−→e+e−pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16

3 data tables

Data read from graph in preprint. Statistical errors only.

Data read from graph. Statistical errors only.

Data read from graph. Statistical errors only.


Pion and kaon pair production in photon-photon collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 57 (1986) 404, 1986.
Inspire Record 228072 DOI 10.17182/hepdata.20204

We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.

5 data tables

Data read from graph. Additional overall systematic error 20% not included.

Data read from graph.. Additional overall systematic error 20% not included.

Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.

More…

Formation of Delta (980) and A2 (1320) in Photon-photon Collisions

The Crystal Ball collaboration Antreasyan, D. ; Aschman, D. ; Besset, D. ; et al.
Phys.Rev.D 33 (1986) 1847, 1986.
Inspire Record 217547 DOI 10.17182/hepdata.23518

The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.

2 data tables

No description provided.

No description provided.


New Results on the Reaction $e^+ e^- \to \mu^+ \mu^-$ at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 31 (1985) 2352, 1985.
Inspire Record 212767 DOI 10.17182/hepdata.3935

We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.

4 data tables

Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.

Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.

No description provided.

More…

Measurement of the Reaction $e^+ e^- \to \tau^+ \tau^-$ at $\sqrt{s}=29$-{GeV}

Gan, K.K. ; Beltrami, I. ; Bylsma, B.G. ; et al.
Phys.Lett.B 153 (1985) 116-120, 1985.
Inspire Record 212773 DOI 10.17182/hepdata.6571

The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.

4 data tables

Comparison of total tau pair cross section with O(alpha**3) QED prediction.

Corrected for acceptance backgraound, and O(alpha**3) radiative effects.

Forward-backward asymmetry based on fit to angular distributions.

More…

Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

3 data tables

Comparison of Bhabhas with QED.

Muon angular distributions.

Forward-backward asymmetry from full angular range.