The polarization of the recoil proton in π+p and π−p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses.
No description provided.
No description provided.
No description provided.
We have used the Fermilab 30-in. bubble-chamber hybrid spectrometer to study multiparticle production in the interactions of 200-GeV/c protons and π+ and K+ mesons with nuclei of gold, silver, and magnesium. We find that the multiplicities of produced particles and negative particles increase linearly with the number of projectile collisions, with no beam or target dependence. The number of secondary collisions in the nucleus increases significantly less rapidly with the number of projectile collisions than has been reported by a streamer chamber experiment. The properties of secondary collisions suggest that they arise from rescattering of recoil nucleons rather than intranuclear cascade of produced particles. Dispersions of multiplicity distributions at fixed impact parameter are in better agreement with a model of independent sources than with Koba-Nielsen-Olesen scaling.
No description provided.
PION means all charged secondaries except identified protons.
No description provided.
The ratio of sea to valence quarks for nucleons in tungsten has been measured for the fractional momentum range 0.04<xN<0.36. The determination is based on the relative production rate of muon pairs by π+ and π− beams on a tungsten target. The results provide the most accurate determination to date of this ratio in the region xN<0.1 and Q2>20 GeV2, and are in good agreement with earlier measurements.
No description provided.
We present evidence for the non-Abelian nature of QCD from a study of multijet events produced in e+e− annihilations from √s =50 to 57 GeV in the AMY detector at the KEK storage ring TRISTAN. A comparison of the three-jet event fraction at TRISTAN to the fraction of the DESY storage ring PETRA shows that the QCD coupling strength αs decreases with increasing Q2. In addition, measurements of the angular distributions of four-jet events show evidence for the triple-gluon vertex.
No description provided.
No description provided.
Inclusive production cross sections of charged pions on carbon, copper and bismuth by neutrons in the energy range of 300–580 MeV have been measured from 54° to 164°. The invariant cross sections can be expressed by Full-size image (<1 K) for the high-energy part of the pion spectra. The slope parameter exhibits a systematic variation with neutron energy and emission angle for the three targets. The dependence of the pion production on the target mass number varies strongly with pion energy and emission angle. The production cross sections are compared with the model of quasi-two-body scaling, the moving-source model and with intranuclear cascade calculations.
No description provided.
Inclusive cross sections for production of protons, deuterons and tritons by neutrons in the energy range of 300–580 MeV on copper and bismuth have been measured at five angles between 54° and 164°. The systematic dependence of the invariant cross sections on incident energy and emission angle are evaluated. For the study of the mass-number dependence earlier data on carbon are included. The results are discussed on the basis of different models, like quasi-two-body sealing or moving-source model.
THE ERRORS VARY BETWEEN 2 AND 9 PCT.
THE ERRORS VARY BETWEEN 2 AND 9 PCT.
THE ERRORS VARY BETWEEN 2 AND 9 PCT.
Correlations between target fragments were measured in α- and 14 N-induced reactions at 70, 250 and 800 MeV/u incident energies. The reaction mechanism is characterized by the linear momentum transfer and the excitation energy which were deduced from the kinematics and the mass distribution of the fission fragments. By selecting targets lighter than Th (Au and Ho) the yield from peripheral collisions is reduced by the increase in the fission barrier thus allowing events with the highest linear momentum transfer and excitation energy to be favoured. The results show that up to an incident energy of 800 MeV/u hot nuclei are formed which decay via normal binary fission. The linear momentum transfer is essentially constant over the covered energy range, but the excitation energy increases until the total incident energy is greater than 3 GeV. At this energy, independent of the projectile mass the fission probability of the heavy nuclei drops below 50%, while the emission of intermediate-mass fragments increases. The relative velocities between two intermediate-mass fragments exceed strongly the values of binary fission. Monte Carlo calculations show that the relative velocities between these fragments exclude a sequential emission from the recoil nucleus and support a simultaneous breakup mechanism.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
SIG IS FISSION CROSS-SECTION CALCULATED WITH THE SOFT-SPHERE MODEL OF REF. PHYS.REV.C11 (1975) 1203.
The analyzing power for elastic pd scattering at 3.5 GeV has been measured in the region 0.1⩽−t⩽1.5 (GeV/ c ) 2 , using the polarized proton beam at KEK. The angular distribution shows a behavior similar to that in the lower energy region. It is reproduced fairly well by the predictions of a multiple scattering model based on the Glauber theory.
No description provided.
A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.
No description provided.
No description provided.
No description provided.
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
No description provided.