Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.
Integrated cross sections for electroweak muon pair production in the evaluated phase space. The cross section has the di-muon contributions from UPSILON, TAU-PAIR and QUARK-QUARKBAR decay subtracted.
Cross section for the production of two muons in e p interactions as a function of the di-muon mass. This data sample includes di-muons from UPSILON, TAU-PAIR and QUARK-QUARKBAR decays.
Cross section for the production of two muons as a function of the muon transverse momentum (two entries per event).
A search for single top quark production is performed in e^\pm p collisions at HERA. The search exploits data corresponding to an integrated luminosity of 118.3 pb^-1. A model for the anomalous production of top quarks in a flavour changing neutral current process involving a t-u-gamma coupling is investigated. Decays of top quarks into a b quark and a W boson are considered in the leptonic and the hadronic decay channels of the W. Both a cut-based analysis and a multivariate likelihood analysis are performed to discriminate anomalous top quark production from Standard Model background processes. In the leptonic channel, 5 events are found while 1.31 \pm 0.22 events are expected from the Standard Model background. In the hadronic channel, no excess above the expectation for Standard Model processes is found. These observations lead to a cross section \sigma (ep -> e t X) = 0.29 +0.15 -0.14 pb at \sqrt{s} = 319 GeV. Alternatively, assuming that the observed events are due to a statistical fluctuation, upper limits of 0.55 pb on the anomalous top production cross section and of 0.27 on the t-u-gamma coupling \kappa_{t-u-gamma} are established at the 95% confidence level.
Cross section from a combination of electron, muon and hadron channels.
Dijet production in deep inelastic ep scattering is investigated in the region of low values of the Bjorken-variable x (10^-4 < x < 10^-2) and low photon virtualities Q^2 (5 < Q^2 < 100 GeV^2). The measured dijet cross sections are compared with perturbative QCD calculations in next-to-leading order. For most dijet variables studied, these calculations can provide a reasonable description of the data over the full phase space region covered, including the region of very low x. However, large discrepancies are observed for events with small separation in azimuth between the two highest transverse momentum jets. This region of phase space is described better by predictions based on the CCFM evolution equation, which incorporates k_t factorized unintegrated parton distributions. A reasonable description is also obtained using the Color Dipole Model or models incorporating virtual photon structure.
Inclusive dijet cross section for a lower ET cut off of (5+0) GeV for the highest ET jet.
Inclusive dijet cross section for a lower ET cut off of (5+1) GeV for the highest ET jet.
Inclusive dijet cross section for a lower ET cut off of (5+2) GeV for the highest ET jet.
Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.
The measured cross sections for the individual samples divided into years and the overall average value.
K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.
Cross section for two photon production of K+ K- in the polar angular region ABS(COS(THETA*)) < 0.6.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.40 to 1.56 GeV.. Statistical errors only.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.56 to 1.72 GeV.. Statistical errors only.
Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.
CM energy values.
Measured cross section for QUARK QUARKBAR (HADRON) production. The data are corrected to no interference between initial and final state radiation.
Measured cross section for MU+ MU- production. The data are corrected to no interference between initial and final state radiation.
The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 0.9 to 1.0 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.0 to 1.2 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.2 to 1.4 GeV.
Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.
Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of X.
Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.
Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.
The differential cross section as a function of X(NAME=POMERON).
The differential cross section as a function of transverse momentum.
J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.
Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.
Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.