The polarization transfer κ 0 and the tensor analyzing power T 20 for the 1 H d p)d reaction have been measured up to an internal momentum of k = 0.58 GeV/c. Comparison of the same observables obtained in recent studies for 1 H d p)d reaction, as a function of k , show different behavior. However the data from these two reactions are almost identical when compared in T 20 versus κ 0 correlation plots. We discuss similarities and differences observed in the two reactions.
The authors use the Infinite Momentum Frame variable K= M( proton) * sqrt(1/(4*a*(1-a)) - 1), where a = (E(proton)+P_long(proton))/(E(deut)+P(deut)).
Quasielastic e-d cross sections have been measured at forward and backward angles. Rosenbluth separations were done to obtain RL and RT at Q2=1.75, 2.50, 3.25, and 4.00 (GeV/c)2. The neutron form factors GEn and GMn have been extracted using a nonrelativistic model. The sensitivity to deuteron wave function, relativistic corrections, and models of the inelastic background are reported. The results for GMn are consistent with the dipole form, while GEn is consistent with zero. Comparisons are made to theoretical models based on vector meson dominance, perturbative QCD, and QCD sum rules, as well as constituent quarks.
Magnetic form factors.
Electric form factors.
The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.
Magnetic form factors.
Electric form factors.
Measurements of the polarization in pp elastic scattering have been made at 5.15 GeV/c over the range −t=0.2 to 1.8 (GeV/c)2. The data are compared with a Regge-pole model, and with the diffraction model of Durand and Lipes in which the absorptive part of the pp interaction is derived from the electromagnetic form factor of the proton. The latter model reproduces the t dependence of the experimental data in a qualitative way.
'1'.
None
No description provided.
No description provided.
The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
None
No description provided.
No description provided.
In an experiment at the Argonne Zero-Gradient Synchrotron we have measured values of the polarization parameter P(t) in the elastic scattering of negative pions, positive pions, positive kaons, and protons on protons at several incident laboratory momenta from 2.50 to 5.15 GeVc, and for values of the momentum transfer variable −t from 0.2 to 2.0 (GeVc)2. The final results from p−p elastic scattering presented here extend our knowledge of the polarization to much larger values of −t than the results of previous measurements. Outstanding features revealed by these polarization data include (1) the development of a dip at about −t=0.7 (GeVc)2, with (2) a substantial secondary peak at larger values of −t and (3) the gradual diminution of the maximum polarization with increasing energy. It is possible to fit the t dependence of the experimental results with a simple model. The energy dependence of the polarized cross sections is also discussed.
No description provided.
No description provided.
No description provided.
We have measured the polarization parameter for proton-proton elastic scattering at p0 = 6 GeV/c for |t|<0.5 (GeV/c)2 using the polarized proton beam at the Argonne Zero Gradient Synchrotron. These data, together with all previous measurements in this t region, are well fitted by the empirical relation P = (0.481±0.010)(−t)12exp(2.291±0.085)t.
No description provided.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.