The production of charged hadrons and K_s mesons in the collisions of quasi-real photons has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies of 161 and 172 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the charged hadrons and K_s mesons have been compared to the leading order Monte Carlo simulations of PHOJET and PYTHIA and to perturbative next-to-leading order (NLO) QCD calculations. The distributions have been measured in the range 10-125 GeV of the hadronic invariant mass W. By comparing the transverse momentum distribution of charged hadrons measured in gamma-gamma interactions with gamma-proton and meson-proton data we find evidence for hard photon interactions in addition to the purely hadronic photon interactions.
No description provided.
No description provided.
No description provided.
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
None
Inclusive charged particle distribution as a function of XP.
Inclusive charged particle distribution as a function of rapidity (YRAP).
Inclusive charged particle distribution as a function of PT in the event plane.
We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.
No description provided.
No description provided.
Integrated b-quark production cross section.
None
Cross section times the branching ratio for decay into dimuons.
We have calculated the double and triple differential cross sections for electron ejection with energy of 14.6 eV in single ionization of H2 by 75 keV proton impact. A molecular version of the continuum distorted wave-eikonal initial state approach is applied, where the interaction between the projectile and the residual molecular ion is considered more properly than in previous applications of the method. For triple differential cross sections, the present results are in better agreement with the experimental data than those of other descriptions when large momentum transfer values are considered. For double differential cross sections the experimental data are reproduced quite well for both coherent and incoherent proton beams.
No description provided.
No description provided.
Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.
No description provided.
No description provided.
No description provided.
We present measurements from events with two isolated prompt photons in p¯p collisions at √s =1.8 TeV. The differential cross section, measured as a function of transverse momentum (PT) of each photon, is about 3 times what next-to-leading-order QCD calculations predict. The cross section for photons with PT in the range 10–19 GeV is 86±27(stat)−23+32(syst) pb. We also study the correlation between the two photons in both azimuthal angle and PT. The magnitude of the vector sum of the transverse momenta of both photons, KT=‖PT1+PT2‖, has a mean value of 〈KT〉=5.1±1.1 GeV.
No description provided.
No description provided.
Vector sum of the photons transvserse momenta.. Errors contain both statistics and systematics.. Data read from plots.
Inclusive J/ψ and ψ(2S) production has been studied in p¯p collisions at √s =1.8 TeV using 2.6±0.2 pb−1 of data taken with the Collider Detector at Fermilab. The products of production cross section times branching fraction were measured as functions of PT for J/ψ→μ+μ− and ψ(2S)→μ+μ−. In the kinematic range PT>6 GeV/c and ‖η‖≤0.5 we get σ(p¯p→J/ψ X)B(J/ψ→μ+μ−) =6.88±0.23(stat)−1.08+0.93(syst) nb, and σ(p¯p→ψ(2S)X)B(ψ(2S)→μ+μ−) =0.232±0.051(stat)−0.032+0.029(syst)nb. From these values we calculate the inclusive b-quark production cross section.
Cross section times the branching ratio into mu+ mu- pairs.
Cross section times the branching ratio into mu+ mu- pairs.
.
We have measured the Z-boson production differential cross section as a function of transverse momentum using Z→ee and Z→μμ decays in p¯p collision at √s =1.8 TeV with the Collider Detector at Fermilab. Comparison with standard-model predictions shows good agreement over the range 0
Errors are systematic and statistical combined, and are correlated bin to bin due to the correction for resolution smearing.