No description provided.
Low x domain.
Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| ≤0.5, 1.0, 1.5, 2.0 along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.
Unfolded charged particle multiplicity distribution given the probability to have an hadronic Z0 decay with MULT charged particles.
Unfolded multiplicity distributions for restricted rapidity bin <= 0.5 along the thrust axis.
Unfolded multiplicity distributions for restricted rapidity bin <= 1.0 along the thrust axis.
Charmless hadronic decays of beauty mesons have been searched for using the data collected with the DELPHI detector at the LEP collider. Several two, three and four-body decay modes have been investigated. Particle identification was used to distinguish the final states with protons, kaons and pions. Three candidate events selected in two-body decay modes are interpreted as evidence for charmless B decays. No excess has been found in higher multiplicity modes and improved upper limits for some of the branching ratios are given.
Two body decay modes. Upper limits at 90% CL. In computing of limits the fractions of B/(d,u)(0,-) and B/S0 mesons were assumed to be 0.39 and 0.12 respectively. Limits are given for the weighted average of the decay rates of the two neutral B mesons.
Three body decay modes. Upper limits at 90% CL.
Four body decay modes. Upper limits at 90% CL.
None
Charged conjugate state is assumed.
The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.
The second DSYS error is due to luminosity.
Charged hadronic four-body decays of D 0 mesons have been studied in the E687 photoproduction experiment at Fermilab. Branching ratios relative to the D 0 → K − π + π + π − decay mode for the Cabibbo-suppressed decays D 0 → π − π + π − π + , D 0 → K − K + π − π + have been measured and the first evidence of the D 0 → K − K + K − π + decay mode is reported. An analysis of the D 0 → K − K + π − π + resonance structure is also presented.
No description provided.
No description provided.
No description provided.
None
THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.
Value of SIN2TW(eff) from CQ-quark asymmetries.
No description provided.
The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.
Transverse component of the fragmentation function.
Longitudinal component of the fragmentation function.
Asymmetry component of the fragmentation function.
We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .
Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).