Version 2
Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

33 data tables match query

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the transverse momentum of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 012006, 2012.
Inspire Record 930005 DOI 10.17182/hepdata.58800

We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.

32 data tables match query

Missing transverse energy after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.

Missing transverse energy after requiring one muon with pT>20 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.

Transverse mass after requiring one electron with pT>25 GeV, at least three jets with pT>60,25,25 GeV and dphi(jets,Etmiss)>0.2.

More…

Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in $pp$ collisions at sqrt(s)=13 TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 081801, 2018.
Inspire Record 1667040 DOI 10.17182/hepdata.84597

Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from Standard Model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450-1800 GeV. The analyzed dataset has an integrated luminosity of up to 29.3 fb$^{-1}$ and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

6 data tables match query

Data, estimated background and uncertainties, in the region defined by |y*|<0.3.

Data, estimated background and uncertainties, in the region defined by |y*|<0.6.

Observed 95% CL limit on cross section times acceptance times branching ratio for each width and mass of Gaussian signal shape tested, in the region defined by |y*|<0.3.

More…

Version 2
Search for dark matter in association with an energetic photon in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2021) 226, 2021.
Inspire Record 1829872 DOI 10.17182/hepdata.96846

A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton$-$proton collisions at $\sqrt{s}$ = 13 TeV. The data, collected during 2015$-$2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb$^{-1}$. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling $g_{aZ\gamma}$ of an axion-like particle to the electroweak gauge bosons.

26 data tables match query

Distribution of $E^{miss}_T$ in data and for the expected SM background in the SRs after performing the 'simplified shape fit'. Overflows are included in the fourth bin of each distribution. The error bars are statistical, and the dashed band includes statistical and systematic uncertainties determined by the fit. The expectations for the simplified model for two different values of $m_{\chi}$ and $m_{med}$, and with $g_{q}=0.25$ and $g_{\chi}=1.0$ and for the ALP model are also shown. The lower panel shows the ratio of data to expected background event yields.

Distribution of $E^{miss}_T$ in data and for the expected SM background in the Single-Muon CR after performing the 'simplified shape fit'. Overflows are included in the fourth bin of each distribution. The $E^{miss}_T$ calculation in this CR does not include the muon contribution. The error bars are statistical, and the dashed band includes statistical and systematic uncertainties determined by the fit. The lower panel shows the ratio of data to expected background event yields.

Distribution of $E^{miss}_T$ in data and for the expected SM background in the Two-Muon CR after performing the 'simplified shape fit'. Overflows are included in the fourth bin of each distribution. The $E^{miss}_T$ calculation in this CR does not include the muon contribution. The error bars are statistical, and the dashed band includes statistical and systematic uncertainties determined by the fit. The lower panel shows the ratio of data to expected background event yields.

More…

Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 146, 2021.
Inspire Record 1843269 DOI 10.17182/hepdata.97160

A search for charged Higgs bosons decaying into $W^\pm W^\pm$ or $W^\pm Z$ bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged $H^{\pm\pm}$ bosons, or the associated production of a doubly charged $H^{\pm\pm}$ boson and a singly charged $H^\pm$ boson. No significant deviations from the Standard Model predictions are observed. $H^{\pm\pm}$ bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively.

25 data tables match query

Distribution of $E_{T}^{miss}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $\Delta R_{\ell^{\pm}\ell^{\pm}}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

Distribution of $M_{jets}$, which is one of the discriminating variables used to define the $2\ell^{sc}$ SRs. The events are selected with the preselection requirements listed in Table 4 in the paper. The data (dots) are compared with the expected contributions from the relevant background sources (histograms). The expected signal distributions for $m_{H^{\pm\pm}} = 300~GeV$ are also shown, scaled to the observed number of events. The last bin includes overflows.

More…

Test of the universality of $\tau$ and $\mu$ lepton couplings in $W$-boson decays from $t\bar{t}$ events with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Nature Phys. 17 (2021) 813-818, 2021.
Inspire Record 1885958 DOI 10.17182/hepdata.100232

The Standard Model of particle physics encapsulates our current best understanding of physics at the smallest scales. A fundamental axiom of this theory is the universality of the couplings of the different generations of leptons to the electroweak gauge bosons. The measurement of the ratio of the rate of decay of $W$ bosons to $\tau$-leptons and muons, $R(\tau/\mu) = B(W \to \tau \nu_\tau)/B(W \to \mu \nu_\mu)$, constitutes an important test of this axiom. A measurement of this quantity with a novel technique using di-leptonic $t\bar{t}$ events is presented based on 139 fb${}^{-1}$ of data recorded with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV. Muons originating from $W$ bosons and those originating from an intermediate $\tau$-lepton are distinguished using the lifetime of the $\tau$-lepton, through the muon transverse impact parameter, and differences in the muon transverse momentum spectra. The value of $R(\tau/\mu)$ is found to be $0.992 \pm 0.013 [\pm 0.007 (stat) \pm 0.011 (syst)]$ and is in agreement with the hypothesis of universal lepton couplings as postulated in the Standard Model. This is the most precise measurement of this ratio, and the only such measurement from the Large Hadron Collider, to date.

7 data tables match query

The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $5<p_{\textrm{T}}^{\mu}<10$ GeV selection in the $e-\mu$ channel.

The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $5<p_{\textrm{T}}^{\mu}<10$ GeV selection in the $\mu-\mu$ channel.

The number of data and fitted simulated events in each bin of the $|d_{0}^{\mu}|$ distribution in the $10<p_{\textrm{T}}^{\mu}<20$ GeV selection in the $e-\mu$ channel.

More…

Search for dark matter produced in association with a single top quark in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 860, 2021.
Inspire Record 1831036 DOI 10.17182/hepdata.99906

This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, $a$, which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+$a$ model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s} = 13$ TeV during LHC Run2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.

71 data tables match query

Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.

Acceptances on TRUTH level of the DMt samples in the tW1L channel for all bins in the SR. The acceptance is defined as the number of weighted TRUTH events in the SR over the number of expected events without any selections. The maps include all samples in the $m_a - m_H$ plane with $tan\beta = 1$.

Efficiencies of the DMt samples in the tW1L channel for all bins in the SR. The efficiency is defined as the number of weighted reconstructed events over the number of weighted TRUTH events in the SR. The maps include all samples in the $m_H - tan\beta$ plane with $m_a = 250~GeV$.

More…

Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
JHEP 10 (2021) 013, 2021.
Inspire Record 1860984 DOI 10.17182/hepdata.100534

A search for dark-matter particles in events with large missing transverse momentum and a Higgs boson candidate decaying into two photons is reported. The search uses $139$ fb$^{-1}$ of proton-proton collision data collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN LHC between 2015 and 2018. No significant excess of events over the Standard Model predictions is observed. The results are interpreted by extracting limits on three simplified models that include either vector or pseudoscalar mediators and predict a final state with a pair of dark-matter candidates and a Higgs boson decaying into two photons.

25 data tables match query

The $E^{miss}_{T}$ distribution of data and MC after the diphoton selection.

The observed exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.

The expected exclusion contor for the $Z^{\prime}_{B}$ model in the $m_{\chi}$-$m_{Z^{\prime}_{B}}$ plane.

More…

Search for heavy diboson resonances in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 1165, 2020.
Inspire Record 1793572 DOI 10.17182/hepdata.93922

This paper reports on a search for heavy resonances decaying into $WW$, $ZZ$ or $WZ$ using proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 139 $\mathrm{fb^{-1}}$, were recorded with the ATLAS detector from 2015 to 2018 at the Large Hadron Collider. The search is performed for final states in which one $W$ or $Z$ boson decays leptonically, and the other $W$ boson or $Z$ boson decays hadronically. The data are found to be described well by expected backgrounds. Upper bounds on the production cross sections of heavy scalar, vector or tensor resonances are derived in the mass range 300-5000 GeV within the context of Standard Model extensions with warped extra dimensions or including a heavy vector triplet. Production through gluon-gluon fusion, Drell-Yan or vector-boson fusion are considered, depending on the assumed model.

23 data tables match query

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for ggF/DY production.

Selection acceptance times efficiency for the 0 leptons signal events from MC simulations as a function of the resonance mass for VBF production.

Selection acceptance times efficiency for the 1 lepton signal events from MC simulations as a function of the resonance mass for ggF/DY production.

More…

Differential cross-section measurements for the electroweak production of dijets in association with a $Z$ boson in proton-proton collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 81 (2021) 163, 2021.
Inspire Record 1803608 DOI 10.17182/hepdata.94218

Differential cross-section measurements are presented for the electroweak production of two jets in association with a $Z$ boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}$=13 TeV and with an integrated luminosity of 139 fb$^{-1}$. The differential cross-sections are measured in the $Z\rightarrow \ell^+\ell^-$ decay channel ($\ell=e,\mu$) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. The differential cross-section as a function of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions.

20 data tables match query

Differential cross-sections for EW $Zjj$ production as a function of $m_{jj}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

Differential cross-sections for EW $Zjj$ production as a function of $|\Delta y_{jj}|$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

Differential cross-sections for EW $Zjj$ production as a function of $p_{\mathrm{T},\ell\ell}$ with breakdown of associated uncertainties. The statistical uncertainty is correlated across bins according to the statistical cross correlation matrix presented in Table 21.

More…