The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Jet production rates using the E0 recombination scheme.
Jet production rates using the E recombination scheme.
Jet production rates using the p0 recombination scheme.
The OPAL detector at LEP is used to measure the branching ratio of theZ0 into invisible particles by measuring the cross section of single photon events ine+e− collisions at centre-of-mass energies near theZ0 resonance. In a data sample of 5.3 pb−1, we observe 73 events with single photons depositing more than 1.5 GeV in the electromagnetic calorimeter, with an expected background of 8±2 events not associated with invisibleZ0 decay. With this data we determine theZ0 invisible width to be 0.50±0.07±0.03 GeV, where the first error is statistical and the second systematic. This corresponds to 3.0±0.4±0.2 light neutrino generations in the Standard Model.
No description provided.
The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
We report on a study of inclusive particle production in pp-interactions at 400 GeV/c. The data are based on 472 K reconstructed events recorded in the NA 27 experiment using the LEBC-EHS facility at CERN. The production cross sections are determined of pseudo scalar (π±,0, η andK±), scalar (f0(975)), vector (ρ±,0(770), ω(783), ϕ(1020),K*0(892), and\(\bar K^{ * 0} \)(892)), and tensorf0 mesons, of protons and antiprotons, and theΔ++,+,0(1232), and Λ(1520) baryon resonances in the forward hemisphere of the center of mass system, as well as longitudinal and transverse momentum distributions. The results are compared with predictions of the FRITIOF model and with other experimental data.
No description provided.
No description provided.
No description provided.
The reactionγγ→3π+3π- has been studied usig the JADE detector at PETRA. The topological cross sectionσ(γγ→3π+3π-) was measured in the CM energy range 1.5–5.5 GeV. The production ofρ0,s was observed and the average number ofρ0,s per event measured. The contributions of the subprocessesγγ→ρ02π+2π-,γγ→ρ0ρ0π+2π- andγγ→ 3π+3π- (phase space) were studied and 95% C.L. upper limits for the cross sectionσ(γγ→ρ0ρ0π+π- determined. Finally the Bose-Einstein correlation for pairs of like signed pions was observed. A fit to a standard parametrization gave results consistent with other studies of this effect in pion systems.
Topological cross section.
Fractions of events for different final states resulting from the extended liklihood fit using incoherent weights.
Fractions of events for different final states resulting from the extended liklihood fit using coherent weights.
A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.
Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
In this paper an investigation of the production of D ∗ ± mesons produced in e + e − collisions at energies around the Z 0 pole is presented. Based on 115 D ∗ ± mesons with x D∗ 2E D ∗ /E cm > 0.2 the properties of D ∗ mesons produced in the reaction Z 0 → c c are studied. Fixing the yield and the fragmentation function of bottom quarks to the values obtained at LEP using lepton tags, and average energy fraction of the D ∗ ± mesons from primary charmed quarks of 〈x c → D ∗ 〉 = 0.52 ± 0.03 +- 0.01 is found and Γ z 0 →c c = (323 ± 61 ± 35) MeV is determined. The first error is the combined statistical and systematic error from this experiment, and the second the total error from other sources.
FD denotes the fraction of D* mesons from primary charmed quarks, derived from the fit (see text).
No description provided.
None
DATA FROM 1989 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.
DATA FROM 1990 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.
Cross sections corrected for the effects of efficiency and kinematic cuts and background. Data from 1989 run, reanalysed.
The production of K 0 mesons in e + e − interactions at center of mass energies in the region of the Z 0 mass has been investigated with the OPAL detector at LEP. The rate is found to be 2.10±0.02±0.14 K 0 , Z 0 per hadronic event. The predictions from the JETSET and HERWIG generators agree very well with both the rate and the scale invariant cross section (1/σ had β) (dσ/d x E ) for K 0 production. Comparisons of the inclusive momentum spectrum with predictions of an analytical QCD formula and with data from lower center of mass energies are presented.
No description provided.
No description provided.
K0 multiplicity per hadronic event.
The production rate of final state photons in hadronic Z 0 decays is measured as a function of y cut = M ij 2 / E cm 2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O( αα s ) matrix element calculation is observed. Comparing the measurement and the prediction for y cut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z 0 , we derived partial widths of up and down type quarks to be Γ u = 333 ± 55 ± 72 MeV and Γ d = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γ cut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.
It is assumed that the couplings of various up quarks to be the same.
It is assumed that the couplings of various down type quarks to be the same.