Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

The T2K collaboration Abe, Ko ; Andreopoulos, Costas ; Antonova, Maria ; et al.
Phys.Rev.Lett. 116 (2016) 181801, 2016.
Inspire Record 1408741 DOI 10.17182/hepdata.73984

T2K reports its first measurements of the parameters governing the disappearance of $\bar{\nu}_\mu$ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic $\bar{\nu}_\mu$ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the $\bar{\nu}_\mu$ survival probability is expected to be minimal. Using a dataset corresponding to $4.01 \times 10^{20}$ protons on target, $34$ fully contained $\mu$-like events were observed. The best-fit oscillation parameters are $\sin^2 (\bar{\theta}_{23}) = 0.45$ and $|\Delta\bar{m}^2_{32}| = 2.51 \times 10^{-3}$ eV$^2$ with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 $\times 10^{-3}$ eV$^2$ respectively. These results are in agreement with existing antineutrino parameter measurements and also with the $\nu_\mu$ disappearance parameters measured by T2K.

6 data tables

1$\sigma$ C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

90% C.L. contour in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

Best-fit point in $\sin^{2}\bar{\theta}_{23}$-$\Delta\bar{m}^{2}_{32}$ plane (normal hierarchy).

More…

Measurement of nucleon structure functions in neutrino scattering.

The CHORUS collaboration Onengut, G. ; van Dantzig, R. ; de Jong, M. ; et al.
Phys.Lett.B 632 (2006) 65-75, 2006.
Inspire Record 699123 DOI 10.17182/hepdata.6187

After completion of the data taking for the νμ→ντ oscillation search, the CHORUS lead–scintillator calorimeter was used in the 1998 run as an active target. High-statistics samples of charged-current interactions were collected in the CERN SPS west area neutrino beam. This beam contained predominantly muon (anti-)neutrinos from sign-selected pions and kaons. We measure the flux and energy spectrum of the incident neutrinos and compare them with beam simulations. The neutrino–nucleon and anti-neutrino–nucleon differential cross-sections are measured in the range 0.01<x<0.7 , 0.05<y<0.95 , 10<Eν<200 GeV . We extract the neutrino–nucleon structure functions F2(x,Q2) , xF3(x,Q2) , and R(x,Q2) and compare these with results from other experiments.

121 data tables

The measured F2 and xF3 at X = 0.020.

The measured F2 and xF3 at X = 0.045.

The measured F2 and xF3 at X = 0.080.

More…

Precise measurement of neutrino and anti-neutrino differential cross sections.

The NuTeV collaboration Tzanov, M. ; Naples, D. ; Boyd, S. ; et al.
Phys.Rev.D 74 (2006) 012008, 2006.
Inspire Record 691719 DOI 10.17182/hepdata.11120

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

159 data tables

Measurement of F2 at X = 0.015.

Measurement of F2 at X = 0.045.

Measurement of F2 at X = 0.080.

More…

A first measurement of low x low Q**2 structure functions in neutrino scattering.

The CCFR & NuTeV collaborations Fleming, Bonnie T. ; Adams, T. ; Alton, A. ; et al.
Phys.Rev.Lett. 86 (2001) 5430-5433, 2001.
Inspire Record 537572 DOI 10.17182/hepdata.19408

A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.

1 data table

F2 measurements.


Improved determination of alpha(s) from neutrino nucleon scattering.

Seligman, W.G. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 79 (1997) 1213-1216, 1997.
Inspire Record 448914 DOI 10.17182/hepdata.37289

We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Study of D*+ and search for D**0 production by neutrinos in BEBC

The Big Bubble Chamber Neutrino collaboration Asratvan, A.E. ; Aderholz, M. ; Ammosov, V.V. ; et al.
Z.Phys.C 68 (1995) 43-46, 1995.
Inspire Record 395454 DOI 10.17182/hepdata.47928

Data from BEBC experiments are combined to provide large statistics for neutrino interactions. ChargedD* mesons are produced in (1.22±0.25)% of neutrino and (1.01±0.31)% of antineutrino charged current interactions. The mean fraction of the hadronic laboratory energy taken by theD*+ in these events is 0.59±0.03±0.08. Less than 18% of all chargedD* mesons from (anti)neutrino interactions are found to be daughters ofD**0 (at the 90% confidence level).

4 data tables

Mean fractional hadronic energy carried by the D*+- in the laboratory system.

Mean value of the Bjorken scaling variable X.

Rate of charged D* meson production per charged current neutrino interaction.

More…

Nucleon neutral current structure functions

Mattison, T.S. ; Bofill, J. ; Busza, W. ; et al.
Phys.Rev.D 42 (1990) 1311-1330, 1990.
Inspire Record 304879 DOI 10.17182/hepdata.22924

The structure of the nucleon is studied by means of deep-inelastic neutrino-nucleon scattering at high energies through the weak neutral current. The neutrino-nucleon scattering events were observed in a 340-metric-ton fine-grained calorimeter exposed to a narrow-band (dichromatic) neutrino beam at Fermilab. The data sample after analysis cuts consists of 9200 charged-current and 3000 neutral-current neutrino and antineutrino events. The neutral-current valence and sea nucleon structure functions are extracted from the x distribution reconstructed from the measured angle and energy of the recoil-hadron shower and the incident narrow-band neutrino-beam energy. They are compared to those extracted from charged-current events analyzed as neutral-current events. It is shown that the nucleon structure is independent of the type of neutrino interaction, which confirms an important aspect of the standard model. The data are also used to determine the value of sin2θW=0.238±0.013±0.015±0.010 for a single-parameter fit, where the first error is from statistical sources, the second from experimental systematic errors, and the third from estimated theoretical errors.

4 data tables

Neutral-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.

Neutral-current sea-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.

Charged-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.

More…

Dimuon Production by Neutrinos in the {Fermilab} 15-ft. Bubble Chamber at the Tevatron

The E632 collaboration Jain, V. ; Harris, F.A. ; Aderholz, M. ; et al.
Phys.Rev.D 41 (1990) 2057, 1990.
Inspire Record 281906 DOI 10.17182/hepdata.22938

The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of Differential Cross-Sections and Nucleon Structure Functions in Charged Current Neutrino Interactions on Iron

Berge, J.P. ; Burkhardt, H. ; Dydak, F. ; et al.
Z.Phys.C 49 (1991) 187-224, 1991.
Inspire Record 281286 DOI 10.17182/hepdata.1696

A high-statistics measurement of the differential cross-sections for neutrino-iron scattering in the wide-band neutrino beam at the CERN SPS is presented. Nucleon structure functions are extracted and theirQ2 evolution is compared with the predictions of quantum chromodynamics.

40 data tables

No description provided.

No description provided.

No description provided.

More…

A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 36 (1987) 611, 1987.
Inspire Record 249672 DOI 10.17182/hepdata.15697

The cross-section ratio of neutral-current and charged-current semileptonic interactions of muon-neutrinos on isoscalar nuclei has been measured with the result:Rv=0.3093±0.0031 for hadronic energy larger than 4 GeV. From this ratio we determined the electroweak mixing angle sin2θW, wheremc is the charm-quark mass in GeV/c2. Comparison with direct measurements ofmw andmz determines the radiative shift of the intermediate boson mass Δr=0.077±0.025(exp.)±0.038(syst.), in agreement with the prediction. Assuming the validity of the electroweak standard theory we determined ϱ=0.990−0.013(mc−1.5)±0.009(exp.)±0.003(theor.).

3 data tables

No description provided.

No description provided.

STATISTICAL ERROR IN THE VALUE CITED IS REDUCING, WHEN CUT IS MORE STRINGENT?.