Z boson pair production in e+ e- collisions at s**(1/2) = 183-GeV and 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Phys.Lett.B 476 (2000) 256-272, 2000.
Inspire Record 524845 DOI 10.17182/hepdata.50015

A study of Z boson pair production in e+e- annihilation at center-of-mass energies near 183 GeV and 189 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nu nubar), quark and lepton pairs, (q qbar l+l-, q qbar nu nubar) and the all-hadronic final state (q qbar q qbar) are considered. In all states with at least one Z boson decaying hadronically, q qbar and b bbar final states are considered separately using lifetime and event-shape tags, thereby improving the cross-section measurement. At sqrt(s) = 189 GeV the Z-pair cross section was measured to be 0.80 (+0.14-0.13, stat.) (+0.06-0.05, syst.) pb, consistent with the Standard Model prediction. At sqrt(s) = 183 GeV the 95% C.L. upper limit is 0.55 pb. Limits on anomalous ZZgamma and ZZZ couplings are derived.

1 data table

Measured cross sections for Z0 pair production.


W+ W- production cross section and W branching fractions in e+ e- collisions at 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Phys.Lett.B 493 (2000) 249-265, 2000.
Inspire Record 533110 DOI 10.17182/hepdata.49910

From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.

2 data tables

Total W+ W- pair production cross section.

Cross sections for the individual decay modes of the W+ W-.


W+ W- production and triple gauge boson couplings at LEP energies up to 183-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 191-215, 1999.
Inspire Record 479051 DOI 10.17182/hepdata.49338

A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.

2 data tables

Total W+ W- cross section measurement. The DSYS error corresponds to the total systematic error.

Cross section for W+ W- production in different decay channels. The DSYS error corresponds to the total systematic error.


Version 2
W$^+$W$^-$ boson pair production in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 092001, 2020.
Inspire Record 1814328 DOI 10.17182/hepdata.94259

A measurement of the W$^+$W$^-$ boson pair production cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data used in this study are collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The W$^+$W$^-$ candidate events are selected by requiring two oppositely charged leptons (electrons or muons). Two methods for reducing background contributions are employed. In the first one, a sequence of requirements on kinematic quantities is applied allowing a measurement of the total production cross section: 117.6 $\pm$ 6.8 pb, which agrees well with the theoretical prediction. Fiducial cross sections are also reported for events with zero or one jet, and the change in the zero-jet fiducial cross section with the jet transverse momentum threshold is measured. Normalized differential cross sections are reported within the fiducial region. A second method for suppressing background contributions employs two random forest classifiers. The analysis based on this method includes a measurement of the total production cross section and also a measurement of the normalized jet multiplicity distribution in W$^+$W$^-$ events. Finally, a dilepton invariant mass distribution is used to probe for physics beyond the standard model in the context of an effective field theory, and constraints on the presence of dimension-6 operators are derived.

16 data tables

Summary of cross sections obtained in the sequential cut analysis. The uncertainty listed is the total uncertainty obtained from the fit to the yields. Same flavor, SF, and different flavor, DF, cross sections are given.

Summary of cross sections obtained in the sequential cut analysis. The uncertainty listed is the total uncertainty obtained from the fit to the yields. Same flavor, SF, and different flavor, DF, cross sections are given.

Measured fraction of events after unfolding for $N_J = 0, 1, \geq 2$ jets. The first uncertainty is statistical and the second combines systematic uncertainties from the response matrix and from the background subtraction.

More…

W boson polarisation at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 585 (2004) 223-236, 2004.
Inspire Record 635790 DOI 10.17182/hepdata.49660

Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.

7 data tables

The fraction of longitudinal polarization for leptonically and hadronically decaying W bosons. The average values for all the centre of mass energies and for both lepton and hadron decay combined are also given.

The luminosity weighted average over all the centre of mass energies of the diagonal elements of the RHO++ and RHO-- SDM as a function of the cosine of the angle of the W- boson for the leptonic decay channel.

The luminosity weighted average over all the centre of mass energies of the diagonal element of the RHO00 SDM as a function of the cosine of the angle of the W- boson for both leptonic and hadronic decay channels, and combined.

More…

Using Z boson events to study parton-medium interactions in PbPb collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 128 (2022) 122301, 2022.
Inspire Record 1850859 DOI 10.17182/hepdata.95230

The spectra measurements of charged hadrons produced in the shower of a parton originating in the same hard scattering with a leptonically decaying Z boson, are reported in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Both PbPb and pp data sets are recorded by the CMS experiment at the LHC, and correspond to an integrated luminosity of 1.7 nb$^{-1}$ and 320 pb$^{-1}$, respectively. Hadronic collision data with one reconstructed Z boson candidate with the transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV/$c$ are analyzed. The Z boson constrains the initial energy and direction of the associated parton. In heavy ion events, azimuthal angular distributions of charged hadrons with respect to the direction of a Z boson are sensitive to modifications of the in-medium parton shower and medium response. Compared to reference data from pp interactions, the results for central PbPb collisions indicate a modification of the angular correlations. The measurements of the fragmentation functions and $p_\mathrm{T}$ spectra of charged particles in Z boson events, which are sensitive to medium modifications of the parton shower longitudinal structure, are also reported. Significant modifications in central PbPb events compared to pp reference data are also found for these observables.

28 data tables

Distributions of $\Delta\phi_{\mathrm{trk,Z}}$ in pp collisions at 5.02 TeV.

Distributions of $\Delta\phi_{\mathrm{trk,Z}}$ in 70-90% centrality PbPb collisions at 5.02 TeV.

Distributions of $\Delta\phi_{\mathrm{trk,Z}}$ in 50-70% centrality PbPb collisions at 5.02 TeV.

More…

Underlying event characteristics and their dependence on jet size of charged-particle jet events in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 86 (2012) 072004, 2012.
Inspire Record 1125575 DOI 10.17182/hepdata.58995

Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.

165 data tables

Mean value of N(C=CHARGED) v jet PT for R=0.2.

Mean value of N(C=CHARGED) v jet PT for R=0.4.

Mean value of N(C=CHARGED) v jet PT for R=0.6.

More…

Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Phys.Rev.C 104 (2021) 014903, 2021.
Inspire Record 1842843 DOI 10.17182/hepdata.114165

Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb$^{-1}$ of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the LHC. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the non-flow contribution to the correlation. Significant nonzero values of the second- and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions.

2 data tables

The measured $v_2$ and $v_3$ charged-particle anisotropies as a function of charged-particle multiplicity in photonuclear collisions

The measured $v_2$ and $v_3$ charged-particle anisotropies as a function of charged-particle transverse momentum in photonuclear collisions


Two-particle azimuthal correlations in $\gamma$p interactions using pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Phys.Lett.B 844 (2023) 137905, 2023.
Inspire Record 2074094 DOI 10.17182/hepdata.89877

The first measurements of the Fourier coefficients ($V_{n\Delta}$) of the azimuthal distributions of charged hadrons emitted from photon-proton ($\gamma$p) interactions at the LHC are presented. The data are extracted from 68.8 nb$^{-1}$ of ultra-peripheral proton-lead (pPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV using the CMS detector. The high energy lead ions produce a flux of photons that can interact with the oncoming proton. This $\gamma$p system provides a set of unique initial conditions with multiplicity lower than in photon-lead collisions but comparable to recent electron-positron and electron-proton data. The $V_{n\Delta}$ coefficients are presented in ranges of event multiplicity and transverse momentum ($p_\mathrm{T}$) and are compared to corresponding hadronic minimum bias pPb results. For a given multiplicity range, the mean $p_\mathrm{T}$ of charged particles is smaller in $\gamma$p than in pPb collisions. For both the $\gamma$p and pPb samples, $V_{1\Delta}$ is negative, $V_{2\Delta}$ is positive, and $V_{3\Delta}$ consistent with 0. For each multiplicity and $p_\mathrm{T}$ range, $V_{2\Delta}$ is larger for $\gamma$p events. The $\gamma$p data are consistent with model predictions that have no collective effects.

8 data tables

$V_{n\Delta}$ coefficients for $\gamma$p events as a function of N$_{\text{trk}}$ for $ 0.3 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.

$V_{n\Delta}$ coefficients for minimum bias events as a function of N$_{\text{trk}}$ for $ 0.3 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.

$V_{n\Delta}$ coefficients for $\gamma$p events as a function of N$_{\text{trk}}$ for $ 1.0 < p_\mathrm{T} < 3.0 GeV$ in pPb collisions at 8.16 TeV.

More…

Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…