Date

Version 3
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
Phys.Rev.D 102 (2020) 052002, 2020.
Inspire Record 1770821 DOI 10.17182/hepdata.92323

The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respect to the predicted rate, known as the reactor antineutrino anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported at a high degree of detail. The current results include improvements in the modelling of detector optical properties and the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino spectra of all cells, largely independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the reactor antineutrino anomaly is rejected at more than 99.9% C.L.

22 data tables match query

Data from Figures 33 and 34 – STEREO exclusion and exclusion sensitivity contours at 95% C.L. for 179 days reactor-on (phase-I+II) using the two-dimensional method. A graphical presentation can be downloaded at "Resources" for reference.

Data from Figures 33 and 34 – STEREO exclusion and exclusion sensitivity contours at 95% C.L. for 179 days reactor-on (phase-I+II) using the two-dimensional method. A graphical presentation can be downloaded at "Resources" for reference.

Data from Figure 32 – STEREO exclusion and exclusion sensitivity contours at 90% C.L. for 179 days reactor-on (phase-I+II). A full graphical presentation can be downloaded at "Resources" for reference.

More…

First antineutrino energy spectrum from $^{235}$U fissions with the STEREO detector at ILL

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
J.Phys.G 48 (2021) 075107, 2021.
Inspire Record 1821378 DOI 10.17182/hepdata.99805

This article reports the measurement of the $^{235}$U-induced antineutrino spectrum shape by the STEREO experiment. 43'000 antineutrinos have been detected at about 10 m from the highly enriched core of the ILL reactor during 118 full days equivalent at nominal power. The measured inverse beta decay spectrum is unfolded to provide a pure $^{235}$U spectrum in antineutrino energy. A careful study of the unfolding procedure, including a cross-validation by an independent framework, has shown that no major biases are introduced by the method. A significant local distortion is found with respect to predictions around $E_\nu \simeq 5.3$ MeV. A gaussian fit of this local excess leads to an amplitude of $A = 12.1 \pm 3.4\%$ (3.5$\sigma$).

3 data tables match query

STEREO Detector Response Matrix, sampled using STEREO's simulation using neutrinos with energy distributed according to HFR's IBD yield prediction. The matrix is given as a 200x22 matrix, with 200 50keV-wide $E_\nu$ bins (centers ranging from 0.05 to 10 MeV) and 22 250keV-wide measured-energy bins corresponding to measured data. The matrix is not normalized; desired normalization (e.g., $\sum_j R_{ij} = e_i$ where $e_i$ is the efficiency) has to be applied before the matrix can be used.

Data from Figure 6 – Selection efficiency as a function of $E_\nu$.

Spectrum prediction for ILL's High Flux Reactor, given in 50keV-wide $E_\nu$ bins (centers ranging from 1.8 to 10 MeV). Huber's $^{235}$U prediction in [2 MeV, 8 MeV] is taken from Phys. Rev. C 84 024617 (2011); exponential extrapolations are performed as described in Phys. Rev. Lett. 125 201801 (2020). Relative corrections from Off-equilibrium and Activation are included to obtain the total HFR's spectrum. The IBD cross section we used is based on Strumia-Vissani Phys. Lett. B, 564 42–54 (2003). The IBD yield is simply HFR's spectrum $\times$ IBD cross section. More details can be found in Section 5, where all notations are also introduced.


Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables match query

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables match query

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables match query

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

Measurements of the structure of quark and gluon jets in hadronic Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Eur.Phys.J.C 17 (2000) 1-18, 2000.
Inspire Record 467225 DOI 10.17182/hepdata.49549

An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test

6 data tables match query

The measured jet broadening distributions (B) in quark and gluon jets seperately.

Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.

The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.

More…

Measurement of vector-tensor spin-transfer observables for the reaction H(p(pol.),d(pol.))pi+ between 580-MeV and 1300-MeV.

Furget, C ; Goy, J ; Kox, S ; et al.
Nucl.Phys.A 655 (1999) 495-521, 1999.
Inspire Record 512680 DOI 10.17182/hepdata.36156

The three polarization tensor components of the deuteron produced in the H( p , d )π + reaction have been measured for the first time. The experiment was performed using a vertically polarized proton beam produced by the SATURNE accelerator. The deuteron polarization was measured with the POLDER polarimeter. The three polarizing powers t 20 00 , t 21 00 and t 22 00 and the three spin-transfer observables t 20 11 , t 22 11 and t 22 11 have been extracted at a proton kinetic energy of 580 MeV over a wide angular range and at two fixed center-of-mass angles, 132° and 151°, between 800 and 1300 MeV. The six observables, calculated in the C.M. helicity frame, have been compared with predictions of the most refined partial-wave analyses and also with the predictions of a theoretical coupled-channel model which includes the NN-NΔ transition. The comparison between the data and the theory/partial-wave analyses shows some discrepancies which get worse with increasing proton energy. Adding these data to the world database should improve significantly future partial-wave analyses. The A y 0 analyzing power has also been measured over the same kinematical range. The partial-wave analysis predictions are in good agreement with this observable.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of spin observables in neutron proton elastic scattering. II: Rescattering parameters

Arnold, J. ; van den Brandt, B. ; Daum, M. ; et al.
Eur.Phys.J.C 17 (2000) 83-95, 2000.
Inspire Record 537915 DOI 10.17182/hepdata.43295

A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran

10 data tables match query

Measurements of DNN with statistical errors only.

Measurements of DSL with statistical errors only.

Measurements of DSS with statistical errors only.

More…

A simultaneous unbinned differential cross section measurement of twenty-four $Z$+jets kinematic observables with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 261803, 2024.
Inspire Record 2791852 DOI 10.17182/hepdata.153189

$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.

26 data tables match query

Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

More…

Version 2
A measurement of soft-drop jet observables in $pp$ collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 101 (2020) 052007, 2020.
Inspire Record 1772062 DOI 10.17182/hepdata.92073

Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.

252 data tables match query

Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.

More…